- Browse by Author
Browsing by Author "Johnstone, Peter A. S."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Acute toxicity in comprehensive head and neck radiation for nasopharynx and paranasal sinus cancers: cohort comparison of 3D conformal proton therapy and intensity modulated radiation therapy.(BMC, 2016) McDonald, Mark W.; Liu, Yuan; Moore, Michael G.; Johnstone, Peter A. S.; Department of Otolaryngology--Head & Neck Surgery, IU School of MedicineBackground: To evaluate acute toxicity endpoints in a cohort of patients receiving head and neck radiation with proton therapy or intensity modulated radiation therapy (IMRT). Methods: Forty patients received comprehensive head and neck radiation including bilateral cervical nodal radiation, given with or without chemotherapy, for tumors of the nasopharynx, nasal cavity or paranasal sinuses, any T stage, N0-2. Fourteen received comprehensive treatment with proton therapy, and 26 were treated with IMRT, either comprehensively or matched to proton therapy delivered to the primary tumor site. Toxicity endpoints assessed included g-tube dependence at the completion of radiation and at 3 months after radiation, opioid pain medication requirement compared to pretreatment normalized as equivalent morphine dose (EMD) at completion of treatment, and at 1 and 3 months after radiation. Results: In a multivariable model including confounding variables of concurrent chemotherapy and involved nodal disease, comprehensive head and neck radiation therapy using proton therapy was associated with a lower opioid pain requirement at the completion of radiation and a lower rate of gastrostomy tube dependence by the completion of radiation therapy and at 3 months after radiation compared to IMRT. Proton therapy was associated with statistically significant lower mean doses to the oral cavity, esophagus, larynx, and parotid glands. In subgroup analysis of 32 patients receiving concurrent chemotherapy, there was a statistically significant correlation with a greater opioid pain medication requirement at the completion of radiation and both increasing mean dose to the oral cavity and to the esophagus. Conclusions: Proton therapy was associated with significantly reduced radiation dose to assessed non-target normal tissues and a reduced rate of gastrostomy tube dependence and opioid pain medication requirements. This warrants further evaluation in larger studies, ideally with patient-reported toxicity outcomes and quality of life endpoints.Item Computed tomography imaging parameters for inhomogeneity correction in radiation treatment planning(Medknow Publications, 2016-01) Das, Indra J.; Cheng, Chee-Wai; Cao, Minsong; Johnstone, Peter A. S.; Department of Radiation Oncology, IU School of MedicineModern treatment planning systems provide accurate dosimetry in heterogeneous media (such as a patient' body) with the help of tissue characterization based on computed tomography (CT) number. However, CT number depends on the type of scanner, tube voltage, field of view (FOV), reconstruction algorithm including artifact reduction and processing filters. The impact of these parameters on CT to electron density (ED) conversion had been subject of investigation for treatment planning in various clinical situations. This is usually performed with a tissue characterization phantom with various density plugs acquired with different tube voltages (kilovoltage peak), FOV reconstruction and different scanners to generate CT number to ED tables. This article provides an overview of inhomogeneity correction in the context of CT scanning and a new evaluation tool, difference volume dose-volume histogram (DVH), dV-DVH. It has been concluded that scanner and CT parameters are important for tissue characterizations, but changes in ED are minimal and only pronounced for higher density materials. For lungs, changes in CT number are minimal among scanners and CT parameters. Dosimetric differences for lung and prostate cases are usually insignificant (<2%) in three-dimensional conformal radiation therapy and < 5% for intensity-modulated radiation therapy (IMRT) with CT parameters. It could be concluded that CT number variability is dependent on acquisition parameters, but its dosimetric impact is pronounced only in high-density media and possibly in IMRT. In view of such small dosimetric changes in low-density medium, the acquisition of additional CT data for financially difficult clinics and countries may not be warranted.Item Impact of proton beam availability on patient treatment schedule in radiation oncology(American Association of Physicists in Medicine, 2012-11-08) Miller, Eric D.; Derenchuk, Vladimir; Das, Indra J.; Johnstone, Peter A. S.; Radiation Oncology, School of MedicineProton beam therapy offers unique physical properties with potential for reduced toxicity and better patient care. There is an increased interest in radiation oncology centers to acquire proton therapy capabilities. The operation of a proton treatment center is quite different than a photon-based clinic because of the more complex technology involved, as well as the single proton beam source serving multiple treatment rooms with no backup source available. There is limited published data which investigates metrics that can be used to determine the performance of a proton facility. The purpose of this study is to evaluate performance metrics of Indiana University Cyclotron Operations (IUCO), including availability, mean time between failures, and mean time to repair, and to determine how changes in these metrics impact patient treatments. We utilized a computerized maintenance management system to log all downtime occurrences and servicing operations for the facility. These data were then used to calculate the availability as well as the mean time between failures and mean time to repair. Impact on patient treatments was determined by analyzing delayed and missed treatments, which were recorded in an electronic medical record and database maintained by the therapists. The availability of the IUCO proton beam has been increasing since beginning of operation in 2003 and averaged 96.9% for 2009 through 2011. The mean time between failures and mean time to repair were also determined and correlated with improvements in the maintenance and operating procedures of the facility, as well as environmental factors. It was found that events less than 15 minutes in duration have minimal impact on treatment delays, while events lasting longer than one hour may result in missed treatments. The availability of the proton beam was more closely correlated with delayed than with missed treatments, demonstrating the utility and limitations of the availability metric. In conclusion, we suggest that the availability metric and other performance parameters, such as the mean time between failures and the mean time to repair, should be used in combination with downtime impact on patient treatments in order to adequately evaluate the operational success of a proton therapy facility.Item Palliative whole brain radiation therapy: an international state of practice(AME, 2023-11) Keit, Emily; Lee, Shing Fung; Woodward, Melissa; Rembielak, Agata; Shiue, Kevin; Desideri, Isacco; Oldenburger, Eva; Bienz, Maya; Rades, Dirk; Theodorou, Marilena; Agyeman, Mervin B.; Yarney, Joel; Bryant, John Michael; Yu, Hsiang-Hsuan Michael; Simone, Charles B., II; Hoskin, Peter; Johnstone, Peter A. S.; Radiation Oncology, School of MedicineBackground: Improvements in radiation delivery and systemic therapies have resulted in few remaining indications for palliative whole brain radiation therapy (WBRT). Most centers preferentially use stereotactic radiotherapy (SRT) and reserve WBRT for those with >15 lesions, leptomeningeal presentation, rapidly progressive disease, or limited estimated survival. Despite regional differences among preferred dose, fractionation, and treatment technique, we predict survival post-WBRT will remain poor—indicating appropriate application of WBRT in this era of SRT and improved systemic therapies. Methods: A multi-center, international retrospective analysis of patients receiving WBRT in 2022 was performed. Primary end point was survival after WBRT. De-identified data were analyzed centrally. Patients receiving WBRT as part of a curative regimen, prophylactically, or as bridging therapy were excluded. The collected data consisted of patient parameters including prescription dose and fractionation, use of neurocognitive sparing techniques and survival after WBRT. Survival was calculated via the Kaplan-Meier method. Results: Of 29,943 international RT prescriptions written at ten participating centers in 2022, 462 (1.5%) were for palliative WBRT. Participating centers were in the United States (n=138), the United Kingdom (n=111), Hong Kong (n=72), Italy (n=49), Belgium (n=45), Germany (n=27), Ghana (n=15), and Cyprus (n=5). Twenty-six different dose regimens were used. The most common prescriptions were for 3,000 cGy over 10 fractions (45.0%) and 2,000 cGy over 5 fractions (43.5%) with significant regional preferences (P<0.001). Prior SRT was delivered in 32 patients (6.7%), hippocampal avoidance (HA) was used in 44 patients (9.5%), and memantine was prescribed in 93 patients (20.1%). Survival ranged from 0 days to still surviving at 402 days post-treatment. The global median overall survival (OS) was 84 days after WBRT [95% confidence interval (CI): 68.0–104.0]. Actuarial survival at 7 days, 1 month, 3 months, and 6 months were 95%, 78%, 48%, and 32%, respectively. Twenty-seven patients (5.8%) were unable to complete their prescribed WBRT. Conclusions: This moment-in-time analysis confirms that patients with poor expected survival are being appropriately selected for WBRT—illustrating the dwindling indications for WBRT—and demonstrates the variance in global practice. Since poor survival precludes patients from deriving benefit, memantine and HA are best suited in carefully selected cases.Item Range modulation in proton therapy planning: a simple method for mitigating effects of increased relative biological effectiveness at the end-of-range of clinical proton beams(Springer Nature, 2014-01-02) Buchsbaum, Jeffrey C.; McDonald, Mark W.; Johnstone, Peter A. S.; Hoene, Ted; Mendonca, Marc; Cheng, Chee-Wei; Das, Indra J.; McMullen, Kevin P.; Wolanski, Mark R.; Radiation Oncology, School of MedicineBackground: The increase in relative biological effectiveness (RBE) of proton beams at the distal edge of the spread out Bragg peak (SOBP) is a well-known phenomenon that is difficult to quantify accurately in vivo. For purposes of treatment planning, disallowing the distal SOBP to fall within vulnerable tissues hampers sparing to the extent possible with proton beam therapy (PBT). We propose the distal RBE uncertainty may be straightforwardly mitigated with a technique we call "range modulation". With range modulation, the distal falloff is smeared, reducing both the dose and average RBE over the terminal few millimeters of the SOBP. Methods: One patient plan was selected to serve as an example for direct comparison of image-guided radiotherapy plans using non-range modulation PBT (NRMPBT), and range-modulation PBT (RMPBT). An additional plan using RMPBT was created to represent a re-treatment scenario (RMPBTrt) using a vertex beam. Planning statistics regarding dose, volume of the planning targets, and color images of the plans are shown. Results: The three plans generated for this patient reveal that in all cases dosimetric and device manufacturing advantages are able to be achieved using RMPBT. Organ at risk (OAR) doses to critical structures such as the cochleae, optic apparatus, hypothalamus, and temporal lobes can be selectively spared using this method. Concerns about the location of the RBE that did significantly impact beam selection and treatment planning no longer have the same impact on the process, allowing these structures to be spared dose and subsequent associated issues. Conclusions: This present study has illustrated that RMPBT can improve OAR sparing while giving equivalent coverage to target volumes relative to traditional PBT methods while avoiding the increased RBE at the end of the beam. It has proven easy to design and implement and robust in our planning process. The method underscores the need to optimize treatment plans in PBT for both traditional energy dose in gray (Gy) and biologic dose (RBE).