- Browse by Author
Browsing by Author "Johnstone, Brian H."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Adipose-derived Stem Cell Conditioned Media Extends Survival time of a mouse model of Amyotrophic Lateral Sclerosis(Nature Publishing Group, 2015-11-20) Fontanilla, Christine V.; Gu, Huiying; Liu, Qingpeng; Zhu, Timothy Z.; Johnstone, Brian H.; March, Keith L.; Pascuzzi, Robert M.; Farlow, Martin R.; Du, Yansheng; Department of Neurology, IU School of MedicineAdipose stromal cells (ASC) secrete various trophic factors that assist in the protection of neurons in a variety of neuronal death models. In this study, we tested the effects of human ASC conditional medium (ASC-CM) in human amyotrophic lateral sclerosis (ALS) transgenic mouse model expressing mutant superoxide dismutase (SOD1(G93A)). Treating symptomatic SOD1(G93A) mice with ASC-CM significantly increased post-onset survival time and lifespan. Moreover, SOD1(G93A) mice given ASC-CM treatment showed high motor neuron counts, less activation of microglia and astrocytes at an early symptomatic stage in the spinal cords under immunohistochemical analysis. SOD1(G93A) mice treated with ASC-CM for 7 days showed reduced levels of phosphorylated p38 (pp38) in the spinal cord, a mitogen-activated protein kinase that is involved in both inflammation and neuronal death. Additionally, the levels of α-II spectrin in spinal cords were also inhibited in SOD1(G93A) mice treated with ASC-CM for 3 days. Interestingly, nerve growth factor (NGF), a neurotrophic factor found in ASC-CM, played a significant role in the protection of neurodegeneration inSOD1(G93A) mouse. These results indicate that ASC-CM has the potential to develop into a novel and effective therapeutic treatment for ALS.Item Characterization and Function of Cryopreserved Bone Marrow from Deceased Organ Donors: A Potential Viable Alternative Graft Source(Elsevier, 2023) Johnstone, Brian H.; Woods, John R.; Goebel, W. Scott; Gu, Dongsheng; Lin, Chieh-Han; Miller, Hannah M.; Musall, Kelsey M.; Sherry, Aubrey M.; Bailey, Barbara J.; Sims, Emily; Sinn, Anthony L.; Pollok, Karen E.; Spellman, Stephen; Auletta, Jeffrey J.; Woods, Erik J.; Pediatrics, School of MedicineDespite the readily available graft sources for allogeneic hematopoietic cell transplantation (alloHCT), a significant unmet need remains in the timely provision of suitable unrelated donor grafts. This shortage is related to the rarity of certain HLA alleles in the donor pool, nonclearance of donors owing to infectious disease or general health status, and prolonged graft procurement and processing times. An alternative hematopoietic progenitor cell (HPC) graft source obtained from the vertebral bodies (VBs) of deceased organ donors could alleviate many of the obstacles associated with using grafts from healthy living donors or umbilical cord blood (UCB). Deceased organ donor-derived bone marrow (BM) can be preemptively screened, cryogenically banked for on-demand use, and made available in adequate cell doses for HCT. We have developed a good manufacturing practice (GMP)-compliant process to recover and cryogenically bank VB-derived HPCs from deceased organ donor (OD) BM. Here we present results from an analysis of HPCs from BM obtained from 250 deceased donors to identify any substantial difference in composition or quality compared with HPCs from BM aspirated from the iliac crests of healthy living donors. BM from deceased donor VBs was processed in a central GMP facility and packaged for cryopreservation in 5% DMSO/2.5% human serum albumin. BM aspirated from living donor iliac crests was obtained and used for comparison. A portion of each specimen was analyzed before and after cryopreservation by flow cytometry and colony-forming unit potential. Bone marrow chimerism potential was assessed in irradiated immunocompromised NSG mice. Analysis of variance with Bonferroni correction for multiple comparisons was used to determine how cryopreservation affects BM cells and to evaluate indicators of successful engraftment of BM cells into irradiated murine models. The t test (with 95% confidence intervals [CIs]) was used to compare cells from deceased donors and living donors. A final dataset of complete clinical and matched laboratory data from 226 cryopreserved samples was used in linear regressions to predict outcomes of BM HPC processing. When compared before and after cryopreservation, OD-derived BM HPCs were found to be stable, with CD34+ cells maintaining high viability and function after thawing. The yield from a single donor is sufficient for transplantation of an average of 1.6 patients (range, 1.2 to 7.5). CD34+ cells from OD-derived HPCs from BM productively engrafted sublethally irradiated immunocompromised mouse BM (>44% and >67% chimerism at 8 and 16 weeks, respectively). Flow cytometry and secondary transplantation confirmed that OD HPCs from BM is composed of long-term engrafting CD34+CD38-CD45RA-CD90+CD49f+ HSCs. Linear regression identified no meaningful predictive associations between selected donor-related characteristics and OD BM HPC quality or yield. Collectively, these data demonstrate that cryopreserved BM HPCs from deceased organ donors is potent and functionally equivalent to living donor BM HPCs and is a viable on-demand graft source for clinical HCT. Prospective clinical trials will soon commence in collaboration with the Center for International Blood and Marrow Research to assess the feasibility, safety, and efficacy of Ossium HPCs from BM (ClinicalTrials.gov identifier NCT05068401).Item GDNF secreted from adipose-derived stem cells stimulates VEGF-independent angiogenesis(Impact Journals, LLC, 2016-06-14) Zhong, Zhaohui; Gu, Huiying; Peng, Jirun; Wang, Wenzheng; Johnstone, Brian H.; March, Keith L.; Farlow, Martin R.; Du, Yansheng; Department of Neurology, School of MedicineAdipose tissue stroma contains a population of mesenchymal stem cells (MSC) promote new blood vessel formation and stabilization. These adipose-derived stem cells (ASC) promote de novo formation of vascular structures in vitro. We investigated the angiogenic factors secreted by ASC and discovered that glial-derived neurotrophic factor (GDNF) is a key mediator for endothelial cell network formation. It was found that both GDNF alone or present in ASC-conditioned medium (ASC-CM) stimulated capillary network formation by using human umbilical vein endothelial cells (HUVECs) and such an effect was totally independent of vascular endothelial growth factor (VEGF) activity. Additionally, we showed stimulation of capillary network formation by GDNF, but not VEGF, could be blocked by the Ret (rearranged during transfection) receptor antagonist RPI-1, a GDNF signaling inhibitor. Furthermore, GDNF were found to be overexpressed in cancer cells that were resistant to the anti-angiogenic treatment using the VEGF antibody. Cancer cells in the liver hepatocellular carcinoma (HCC), a non-nervous related cancer, highly overexpressed GDNF as compared to normal liver cells. Our data strongly suggest that, in addition to VEGF, GDNF secreted by ASC and HCC cells, may be another important factor promoting pathological neovascularization. Thus, GDNF may be a potential therapeutic target for HCC and obesity treatments.Item HUMAN ADIPOSE-DERIVED STEM CELLS ATTENUATE CIGARETTE SMOKE INDUCED BONE MARROW HYPOPLASIA VIA SECRETION OF ANTI-INFLAMMATORY CYTOKINE TSG-6(Office of the Vice Chancellor for Research, 2012-04-13) Xie, Jie; Petrache, Irina; Broxmeyer, Hal E.; March, Keith L.; Feng, Dongni; Cook, Todd G.; Schweitzer, Kelly; Johnstone, Brian H.Introduction We have previously observed bone marrow (BM) hypo-plasia in a murine model of chronic smoking, which was ameliorated by mu-rine adipose-derived stromal cells (ASC). This study was designed to test the hypothesis that ASC exert their marrow protective effects through key paracrine factors. Methods Mice (NSG or C57BL/6) were exposed to ciga-rette smoke (CS) for 1 day to 6 months. Human ASC or ASC conditioned media were administered through intravenous (i.v.) or intraperitoneal (i.p.) injections. Secretion of TSG-6 from ASC in response to TNF alpha and IL-1 beta were measured by ELISA. Expression of TSG-6 in ASC was knocked down by siRNA. BM hematopoietic progenitors were quantified by colony forming-unit assays. Possible engrafted human ASC in mouse BM were ex-amined by anti-human nuclei staining. Results The myelossupressive effect of cigarette smoking occurred acutely (1 day: 65.6% of nonsmoking control, NSC, p<0.01) and worsened with prolonged exposure (3 days: 34.3% NSC, p<0.01). Such damage could be ameliorated with either ASC (111.0% NSC, p>0.05) or ASC conditioned media (105.7% NSC, p>0.05). Inflammatory cytokines (TNF alpha and IL-1 beta) elevated in smokers (Kuschner et al, 1996; de Maat et al, 2002) demonstrated strong cross-species stimulatory effects on secretions of an anti-inflammatory cytokine, TSG-6 from ASC (TNF alpha: 8.7 +/- 1.3 fold, IL-1 beta: 8.2 +/- 1.1 fold). Knocking down TSG-6 (>90%) abolished the marrow-protective effect of ASC. No human cells were detected in recipient mouse bone marrow. Conclusions The pro-tective effects of ASC against smoking-induced myelosuppression are medi-ated by trophic factors rather than cell engraftment or differentiation. TSG-6 appears to play a significant role in the modulatory pathway: smoke--inflammatory cytokine release--TSG6 secretion from ASC--bone marrow protection.Item Identification and characterization of a large source of primary mesenchymal stem cells tightly adhered to bone surfaces of human vertebral body marrow cavities(Elsevier, 2020) Johnstone, Brian H.; Miller, Hannah M.; Beck, Madelyn R.; Gu, Dongsheng; Thirumala, Sreedhar; LaFontaine, Michael; Brandacher, Gerald; Woods, Erik J.; Pediatrics, School of MedicineBackground: Therapeutic allogeneic mesenchymal stromal cells (MSCs) are currently in clinical trials to evaluate their effectiveness in treating many different disease indications. Eventual commercialization for broad distribution will require further improvements in manufacturing processes to economically manufacture MSCs at scales sufficient to satisfy projected demands. A key contributor to the present high cost of goods sold for MSC manufacturing is the need to create master cell banks from multiple donors, which leads to variability in large-scale manufacturing runs. Therefore, the availability of large single donor depots of primary MSCs would greatly benefit the cell therapy market by reducing costs associated with manufacturing. Methods: We have discovered that an abundant population of cells possessing all the hallmarks of MSCs is tightly associated with the vertebral body (VB) bone matrix and only liberated by proteolytic digestion. Here we demonstrate that these vertebral bone-adherent (vBA) MSCs possess all the International Society of Cell and Gene Therapy-defined characteristics (e.g., plastic adherence, surface marker expression and trilineage differentiation) of MSCs, and we have therefore termed them vBA-MSCs to distinguish this population from loosely associated MSCs recovered through aspiration or rinsing of the bone marrow compartment. Results: Pilot banking and expansion were performed with vBA-MSCs obtained from 3 deceased donors, and it was demonstrated that bank sizes averaging 2.9 × 108 ± 1.35 × 108 vBA-MSCs at passage 1 were obtainable from only 5 g of digested VB bone fragments. Each bank of cells demonstrated robust proliferation through a total of 9 passages, without significant reduction in population doubling times. The theoretical total cell yield from the entire amount of bone fragments (approximately 300 g) from each donor with limited expansion through 4 passages is 100 trillion (1 × 1014) vBA-MSCs, equating to over 105 doses at 10 × 106 cells/kg for an average 70-kg recipient. Discussion: Thus, we have established a novel and plentiful source of MSCs that will benefit the cell therapy market by overcoming manufacturing and regulatory inefficiencies due to donor-to-donor variability.Item Identification of Bone Marrow Cell Subpopulations Associated With Improved Functional Outcomes in Patients With Chronic Left Ventricular Dysfunction: An Embedded Cohort Evaluation of the FOCUS-CCTRN Trial(SAGE Publications, 2016) Taylor, Doris A.; Perin, Emerson C.; Willerson, James T.; Zierold, Claudia; Resende, Micheline; Carlson, Marjorie; Nestor, Belinda; Wise, Elizabeth; Orozco, Aaron; Pepine, Carl J.; Henry, Timothy D.; Ellis, Stephen G.; Zhao, David X. M.; Traverse, Jay H.; Cooke, John P.; Schutt, Robert C.; Bhatnagar, Aruni; Grant, Maria B.; Lai, Dejian; Johnstone, Brian H.; Sayre, Shelly L.; Moyé, Lem; Ebert, Ray F.; Bolli, Roberto; Simari, Robert D.; Cogle, Christopher R.; Department of Medicine, School of MedicineIn the current study, we sought to identify bone marrow-derived mononuclear cell (BM-MNC) subpopulations associated with a combined improvement in left ventricular ejection fraction (LVEF), left ventricular end-systolic volume (LVESV), and maximal oxygen consumption (VO2 max) in patients with chronic ischemic cardiomyopathy 6 months after receiving transendocardial injections of autologous BM-MNCs or placebo. For this prospectively planned analysis, we conducted an embedded cohort study comprising 78 patients from the FOCUS-Cardiovascular Cell Therapy Research Network (CCTRN) trial. Baseline BM-MNC immunophenotypes and progenitor cell activity were determined by flow cytometry and colony-forming assays, respectively. Previously stable patients who demonstrated improvement in LVEF, LVESV, and VO2 max during the 6-month course of the FOCUS-CCTRN study (group 1, n = 17) were compared to those who showed no change or worsened in one to three of these endpoints (group 2, n = 61) and to a subset of patients from group 2 who declined in all three functional endpoints (group 2A, n = 11). Group 1 had higher frequencies of B-cell and CXCR4(+) BM-MNC subpopulations at study baseline than group 2 or 2A. Furthermore, patients in group 1 had fewer endothelial colony-forming cells and monocytes/macrophages in their bone marrow than those in group 2A. To our knowledge, this is the first study to show that in patients with ischemic cardiomyopathy, certain bone marrow-derived cell subsets are associated with improvement in LVEF, LVESV, and VO2 max at 6 months. These results suggest that the presence of both progenitor and immune cell populations in the bone marrow may influence the natural history of chronic ischemic cardiomyopathy-even in stable patients. Thus, it may be important to consider the bone marrow composition and associated regenerative capacity of patients when assigning them to treatment groups and evaluating the results of cell therapy trials.Item Intravenous xenogeneic transplantation of human adipose-derived stem cells improves left ventricular function and microvascular integrity in swine myocardial infarction model(Wiley, 2015-08) Hong, Soon Jun; Rogers, Pamela I.; Kihlken, John; Warfel, Jessica; Bull, Chris; Deuter-Reinhard, Maja; Feng, Dongni; Xie, Jie; Kyle, Aaron; Merfeld-Clauss, Stephanie; Johnstone, Brian H.; Traktuev, Dmitry O.; Chen, Peng-Sheng; Lindner, Jonathan R.; March, Keith L.; Medicine, School of MedicineOBJECTIVES: The potential for beneficial effects of adipose-derived stem cells (ASCs) on myocardial perfusion and left ventricular dysfunction in myocardial ischemia (MI) has not been tested following intravenous delivery. METHODS: Surviving pigs following induction of MI were randomly assigned to 1 of 3 different groups: the placebo group (n = 7), the single bolus group (SB) (n = 7, 15 × 10(7) ASCs), or the divided dose group (DD) (n = 7, 5 × 10(7) ASCs/day for three consecutive days). Myocardial perfusion defect area and coronary flow reserve (CFR) were compared during the 28-day follow-up. Also, serial changes in the absolute number of circulating CD4(+) T and CD8(+) T cells were measured. RESULTS: The increases in ejection fraction were significantly greater in both the SB and the DD groups compared to the placebo group (5.4 ± 0.9%, 3.7 ± 0.7%, and -0.4 ± 0.6%, respectively), and the decrease in the perfusion defect area was significantly greater in the SB group than the placebo group (-36.3 ± 1.8 and -11.5 ± 2.8). CFR increased to a greater degree in the SB and the DD groups than in the placebo group (0.9 ± 0.2, 0.8 ± 0.1, and 0.2 ± 0.2, respectively). The circulating number of CD8(+) T cells was significantly greater in the SB and DD groups than the placebo group at day 7 (3,687 ± 317/µL, 3,454 ± 787/µL, and 1,928 ± 457/µL, respectively). The numbers of small vessels were significantly greater in the SB and the DD groups than the placebo group in the peri-infarct area. CONCLUSIONS: Both intravenous SB and DD delivery of ASCs are effective modalities for the treatment of MI in swine. Intravenous delivery of ASCs, with its immunomodulatory and angiogenic effects, is an attractive noninvasive approach for myocardial rescue.Item Ischemia considerations for the development of an organ and tissue donor derived bone marrow bank(BMC, 2020-08-05) Woods, Erik J.; Sherry, Aubrey M.; Woods, John R.; Hardin, James W.; LaFontaine, Michael; Brandacher, Gerald; Johnstone, Brian H.; Medical and Molecular Genetics, School of MedicineBackground Deceased organ donors represent an untapped source of therapeutic bone marrow (BM) that can be recovered in 3–5 times the volume of that obtained from living donors, tested for quality, cryopreserved, and banked indefinitely for future on-demand use. A challenge for a future BM banking system will be to manage the prolonged ischemia times that are inevitable when bones procured at geographically-dispersed locations are shipped to distant facilities for processing. Our objectives were to: (a) quantify, under realistic field conditions, the relationship between ischemia time and the quality of hematopoietic stem and progenitor cells (HSPCs) derived from deceased-donor BM; (b) identify ischemia-time boundaries beyond which HSPC quality is adversely affected; (c) investigate whole-body cooling as a strategy for preserving cell quality; and (d) investigate processing experience as a variable affecting quality. Methods Seventy-five bones from 62 donors were analyzed for CD34+ viability following their exposure to various periods of warm-ischemia time (WIT), cold-ischemia time (CIT), and body-cooling time (BCT). Regression models were developed to quantify the independent associations of WIT, CIT, and BCT, with the viability and function of recovered HSPCs. Results Results demonstrate that under “real-world” scenarios: (a) combinations of warm- and cold-ischemia times favorable to the recovery of high-quality HSPCs are achievable (e.g., CD34+ cell viabilities in the range of 80–90% were commonly observed); (b) body cooling prior to bone recovery is detrimental to cell viability (e.g., CD34+ viability < 73% with, vs. > 89% without body cooling); (c) vertebral bodies (VBs) are a superior source of HSPCs compared to ilia (IL) (e.g., %CD34+ viability > 80% when VBs were the source, vs. < 74% when IL were the source); and (d) processing experience is a critical variable affecting quality. Conclusions Our models can be used by an emerging BM banking system to formulate ischemia-time tolerance limits and data-driven HSPC quality-acceptance standards. Keywords: Deceased-donor bone marrow, Bone marrow banking, Bone marrow ischemia time, Hematopoietic stem cell transplantItem A Large-Scale Bank of Organ Donor Bone Marrow and Matched Mesenchymal Stem Cells for Promoting Immunomodulation and Transplant Tolerance(Frontiers Media, 2021-02-26) Johnstone, Brian H.; Messner, Franka; Brandacher, Gerald; Woods, Erik J.; Medical and Molecular Genetics, School of MedicineInduction of immune tolerance for solid organ and vascular composite allografts is the Holy Grail for transplantation medicine. This would obviate the need for life-long immunosuppression which is associated with serious adverse outcomes, such as infections, cancers, and renal failure. Currently the most promising means of tolerance induction is through establishing a mixed chimeric state by transplantation of donor hematopoietic stem cells; however, with the exception of living donor renal transplantation, the mixed chimerism approach has not achieved durable immune tolerance on a large scale in preclinical or clinical trials with other solid organs or vascular composite allotransplants (VCA). Ossium Health has established a bank of cryopreserved bone marrow (BM), termed “hematopoietic progenitor cell (HPC), Marrow,” recovered from deceased organ donor vertebral bodies. This new source for hematopoietic cell transplant will be a valuable resource for treating hematological malignancies as well as for inducing transplant tolerance. In addition, we have discovered and developed a large source of mesenchymal stem (stromal) cells (MSC) tightly associated with the vertebral body bone fragment byproduct of the HPC, Marrow recovery process. Thus, these vertebral bone adherent MSC (vBA-MSC) are matched to the banked BM obtained from each donor, as opposed to third-party MSC, which enhances safety and potentially efficacy. Isolation and characterization of vBA-MSC from over 30 donors has demonstrated that the cells are no different than traditional BM-MSC; however, their abundance is >1,000-fold higher than obtainable from living donor BM aspirates. Based on our own unpublished data as well as reports published by others, MSC facilitate chimerism, especially at limiting hematopoietic stem and progenitor cell (HSPC) numbers and increase safety by controlling and/or preventing graft-vs.-host-disease (GvHD). Thus, vBA-MSC have the potential to facilitate mixed chimerism, promote complementary peripheral immunomodulatory functions and increase safety of BM infusions. Both HPC, Marrow and vBA-MSC have potential use in current VCA and solid organ transplant (SOT) tolerance clinical protocols that are amenable to “delayed tolerance.” Current trials with HPC, Marrow are planned with subsequent phases to include vBA-MSC for tolerance of both VCA and SOT.Item Therapeutic Potential of Adipose-Derived Therapeutic Factor Concentrate for Treating Critical Limb Ischemia(Cognizant, 2016) Procházka, Václav; Jurčíková, Jana; Laššák, Ondrej; Vítková, Kateřina; Pavliska, Lubomír; Porubová, Ludmila; Buszman, Piotr P.; Krauze, Agata; Fernandez, Carlos; Jalůvka, František; Špačková, Iveta; Lochman, Ivo; Jana, Dvořáčková; Merfeld-Clauss, Stephanie; March, Keith L.; Traktuev, Dmitry O.; Johnstone, Brian H.; Department of Medicine, IU School of MedicineTransplantation of adipose-derived stem cells (ADSCs) is an emerging therapeutic option for addressing intractable diseases such as critical limb ischemia (CLI). Evidence suggests that therapeutic effects of ADSCs are primarily mediated through paracrine mechanisms rather than transdifferentiation. These secreted factors can be captured in conditioned medium (CM) and concentrated to prepare a therapeutic factor concentrate (TFC) composed of a cocktail of beneficial growth factors and cytokines that individually and in combination demonstrate disease-modifying effects. The ability of a TFC to promote reperfusion in a rabbit model of CLI was evaluated. A total of 27 adult female rabbits underwent surgery to induce ischemia in the left hindlimb. An additional five rabbits served as sham controls. One week after surgery, the ischemic limbs received intramuscular injections of either (1) placebo (control medium), (2) a low dose of TFC, or (3) a high dose of TFC. Limb perfusion was serially assessed with a Doppler probe. Blood samples were analyzed for growth factors and cytokines. Tissue was harvested postmortem on day 35 and assessed for capillary density by immunohistochemistry. At 1 month after treatment, tissue perfusion in ischemic limbs treated with a high dose of TFC was almost double (p < 0.05) that of the placebo group [58.8 ± 23 relative perfusion units (RPU) vs. 30.7 ± 13.6 RPU; mean ± SD]. This effect was correlated with greater capillary density in the affected tissues and with transiently higher serum levels of the angiogenic and prosurvival factors vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF). The conclusions from this study are that a single bolus administration of TFC demonstrated robust effects for promoting tissue reperfusion in a rabbit model of CLI and that a possible mechanism of revascularization was promotion of angiogenesis by TFC. Results of this study demonstrate that TFC represents a potent therapeutic cocktail for patients with CLI, many of whom are at risk for amputation of the affected limb.