- Browse by Author
Browsing by Author "Johnson, Hunter C."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Biomimetic stiffening of cell-laden hydrogels via sequential thiol-ene and hydrazone click reactions(Elsevier, 2021) Chang, Chun-Yi; Johnson, Hunter C.; Babb, Olivia; Fishel, Melissa L.; Lin, Chien-Chi; Biomedical Engineering, School of Engineering and TechnologyHydrogels with dynamically tunable crosslinking are invaluable for directing stem cell fate and mimicking a stiffening matrix during fibrosis or tumor development. The increases in matrix stiffness during tissue development are often accompanied by the accumulation of extracellular matrices (e.g., collagen, hyaluronic acid (HA)), a phenomenon that has received little attention in the development of dynamic hydrogels. In this contribution, we present a gelatin-based cell-laden hydrogel system capable of being dynamically stiffened while accumulating HA, a key glycosaminoglycans (GAG) increasingly deposited by stromal cells during tumor progression. Central to this strategy is the synthesis of a dually-modified gelatin macromer – gelatin-norbornene-carbohydrazide (GelNB-CH), which is susceptible to both thiol-norbornene photopolymerization and hydrazone click chemistry. We demonstrate that the crosslinking density of cell-laden thiol-norbornene hydrogels can be dynamically tuned via simple incubation with aldehyde-bearing macromers (e.g., oxidized dextran (oDex) or oHA). The GelNB-CH hydrogel system is highly cytocompatible, as demonstrated by in situ encapsulation of pancreatic cancer cells (PCC) and cancer-associated fibroblasts (CAF). The unique dynamic stiffening scheme provides a platform to study tandem accumulation of HA and elevation in matrix stiffness in the pancreatic tumor microenvironment.Item Dynamic Click Hydrogels for Xeno-Free Culture of Induced Pluripotent Stem Cells(Wiley, 2020-11) Arkenberg, Matthew R.; Dimmitt, Nathan H.; Johnson, Hunter C.; Koehler, Karl R.; Lin, Chien-Chi; Biomedical Engineering, School of Engineering and TechnologyXeno-free, chemically defined poly(ethylene glycol) (PEG)-based hydrogels are being increasingly used for in vitro culture and differentiation of human induced pluripotent stem cells (hiPSCs). These synthetic matrices provide tunable gelation and adaptable material properties crucial for guiding stem cell fate. Here, sequential norbornene-click chemistries are integrated to form synthetic, dynamically tunable PEG-peptide hydrogels for hiPSCs culture and differentiation. Specifically, hiPSCs are photoencapsulated in thiol-norbornene hydrogels crosslinked by multiarm PEG-norbornene (PEG-NB) and proteaselabile crosslinkers. These matrices are used to evaluate hiPSC growth under the influence of extracellular matrix properties. Tetrazine-norbornene (Tz-NB) click reaction is then employed to dynamically stiffen the cell-laden hydrogels. Fast reactive Tz and its stable derivative methyltetrazine (mTz) are tethered to multiarm PEG, yielding mono-functionalized PEG-Tz, PEG-mTz, and dualfunctionalized PEG-Tz/mTz that react with PEG-NB to form additional crosslinks in the cell-laden hydrogels. The versatility of Tz-NB stiffening is demonstrated with different Tz-modified macromers or by intermittent incubation of PEG-Tz for temporal stiffening. Finally, the Tz-NB-mediated dynamic stiffening is explored for 4D culture and definitive endoderm differentiation of hiPSCs. Overall, this dynamic hydrogel platform affords exquisite controls of hydrogel crosslinking for serving as a xeno-free and dynamic stem cell niche.Item Integrative Click Chemistry for Tuning Physicochemical Properties of Cancer Cell-Laden Hydrogels(2020-05) Johnson, Hunter C.; Lin, Chien-Chi; Naumann, Christoph; Na, SungsooThe pancreas is a vital organ that secretes key metabolic hormones and digestive enzymes. In pancreatic ductal adenocarcinoma (PDAC), one of the leading causes of cancer-related death in the world, limited advances in diagnosis or therapies have been made over decades. Key features of PDAC progression include an elevated matrix sti ness and an increased deposition of extracellular matrices (ECM), such as hyaluronic acid (HA). Understanding how cells interact with components in the tumor microenvironment (TME) as PDAC progresses can assist in developing diagnostic tools and therapeutic treatment options. In recent years, hydrogels have proven to be an excellent platform for studying cell-cell and cell-matrix interactions. Utilizing chemically modi ed and naturally derived materials, hydrogel networks can be formed to encompass not only the components, but also the physicochemical properties of the dynamic TME. In this work, a dynamic hydrogel system that integrates multiple click chemistries was developed for tuning matrix physicochemical properties in a manner similar to the temporally increased matrix sti ness and depositions of HA. Subsequently, these dynamic hydrogels were used to investigate how matrix sti ening and increased HA presentation might a ect survival of PDAC cells and their response to chemotherapeutics.