- Browse by Author
Browsing by Author "Ji, Julie Ying Hui"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Mechano-sensitivity of nuclear lamin proteins in endothelial cells(2016-07-22) Jiang, Yizhi; Ji, Julie Ying Hui; Na, Sungsoo; Wallace, JosephAtherosclerosis is a chronic disease that happens mostly in aged people, and recently studies have showed many similarities between Hutchinson Gilford Progeria Syndrome (HGPS) cells and aging cells, implicating dysfunctions of lamin A/C in aging process and atherosclerosis, as HGPS is caused by a mutated form of lamin A/C. Blood flow in arteries is generating shear stress that is mostly applied on endothelial cells that align along inner blood vessel wall. At the same time, endothelial cells are also under stretch by periodic arterial pulses. Considering the fact that atherosclerosis is prone to developing at arterial branches with disturbed shear and increased stretch, it is highly possible that laminar flow and proper stretch force are regulating endothelium to function appropriately. In this thesis, the investigation of what effects laminar flow or cyclic stretch can bring to endothelial cells was conducted, and examination of lamin A/C expression under mechanical forces were elaborated and incorporated with cell senescence. Results showed that laminar shear stress and stretch force can regulate lamin A/C expression in different patterns, which were impaired in senescent cells.Item THE ROLE OF DAP-KINASE IN MODULATING VASCULAR ENDOTHELIAL CELL FUNCTION UNDER FLUID SHEAR STRESS(2010-05-05T15:00:50Z) Rennier, Keith; Ji, Julie Ying Hui; Yokota, Hiroki, 1955-; Li, JiliangAtherosclerosis preferentially develops in vascular regions of low or disturbed flow and high spatial gradients. Endothelial cells that line the vessel walls actively participate in translating mechanical stimuli, shear stress due to fluid flow, into intracellular signals to regulate cellular activities. Atherosclerosis is a chronic disease. During its development, a cascade of inflammatory signals alters the arterial endothelial homeostatic functions. Death-associated protein (DAP) kinase and its correlated pathway have been associated with cell apoptosis, turnover, and cytoskeleton remodeling in cellular networks, ultimately leading to changes in cell motility and vascular wall permeability. DAP-kinase is also highly regulated by inflammatory triggers such as TNF-α. This thesis investigates DAP-kinase modulation due to shear stress, and the role of DAP-kinase activity in endothelial responses toward applied shear stress. Using bovine aortic endothelial cells (BAEC), DAP-kinase expression is demonstrated in both sheared (10 dynes/cm2) and static conditions. Overall DAPK expression increased with extended shearing, while the presence of phosphorylated DAPK decreased with applied shear stress, as demonstrated in Western blot analysis. In correlation, DAPK RNA expression profiles were explored to understand pre-translational behavior and to understand just how shear stress influences DAPK expression over time. There is a temporal increase in DAPK mRNA, occurring at earlier time points when compared to DAPK protein expression, displaying the precedence of mRNA expression leading to increased translation into protein. From our apoptosis assay results, shear stress reduces apoptotic and late stage/necrotic cell fractions. The exposure of shear stress potentially plays a role in inhibiting apoptosis activation and TNF-α induced death cascade. Overall, the apoptosis activity influenced by shear further exhibits a possible connection between shear stress and apoptosis inhibition. The shear stress ultimately decreases overall apoptosis, while DAPK expression is increased. Therefore, DAPK may have a function in other possible mechano-transduction cascades, when endothelial cells are exposed to constant shear. Our data suggests shear stress modulation of DAP-kinase expression and activity, and the potential crosstalk of mechano-transduction and DAPK/apoptosis pathway, may lead to further understanding the responsibility of DAPK in endothelial cell function.