- Browse by Author
Browsing by Author "Jensen, Nathan R."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item An improved method for murine laser-induced choroidal neovascularization lesion quantification from optical coherence tomography images(Elsevier, 2022-08-02) Jensen, Nathan R.; Lambert-Cheatham, Nathan; Hartman, Gabriella D.; Muniyandi, Anbukkarasi; Park, Bomina; Sishtla, Kamakshi; Corson, Timothy W.; Ophthalmology, School of MedicineLaser-induced choroidal neovascularization (L-CNV) in murine models is a standard method for assessing therapies, genetics, and mechanisms relevant to the blinding eye disease neovascular or "wet" age-related macular degeneration. The ex vivo evaluation of these lesions involves confocal microscopy analysis. In vivo evaluation via optical coherence tomography (OCT) has previously been established and allows longitudinal assessment of lesion development. However, to produce robust data, evaluation of many lesions may be required, which can be a slow, arduous process. A prior, manual method for quantifying these lesions as ellipsoids from orthogonal OCT images was effective but time consuming. We therefore developed an OCT lesion quantification that is simplified, streamlined, and less time-consuming.Item PRMT5 is a therapeutic target in choroidal neovascularization(Nature, 2023) Muniyandi, Anbukkarasi; Martin, Matthew; Sishtla, Kamakshi; Motolani, Aishat; Sun, Mengyao; Jensen, Nathan R.; Qi, Xiaoping; Boulton, Michael E.; Prabhu, Lakshmi; Lu, Tao; Corson, Timothy W.; Ophthalmology, School of MedicineOcular neovascular diseases including neovascular age-related macular degeneration (nvAMD) are widespread causes of blindness. Patients’ non-responsiveness to currently used biologics that target vascular endothelial growth factor (VEGF) poses an unmet need for novel therapies. Here, we identify protein arginine methyltransferase 5 (PRMT5) as a novel therapeutic target for nvAMD. PRMT5 is a well-known epigenetic enzyme. We previously showed that PRMT5 methylates and activates a proangiogenic and proinflammatory transcription factor, the nuclear factor kappa B (NF-κB), which has a master role in tumor progression, notably in pancreatic ductal adenocarcinoma and colorectal cancer. We identified a potent and specific small molecule inhibitor of PRMT5, PR5-LL-CM01, that dampens the methylation and activation of NF-κB. Here for the first time, we assessed the antiangiogenic activity of PR5-LL-CM01 in ocular cells. Immunostaining of human nvAMD sections revealed that PRMT5 is highly expressed in the retinal pigment epithelium (RPE)/choroid where neovascularization occurs, while mouse eyes with laser induced choroidal neovascularization (L-CNV) showed PRMT5 is overexpressed in the retinal ganglion cell layer and in the RPE/choroid. Importantly, inhibition of PRMT5 by PR5-LL-CM01 or shRNA knockdown of PRMT5 in human retinal endothelial cells (HRECs) and induced pluripotent stem cell (iPSC)-derived choroidal endothelial cells (iCEC2) reduced NF-κB activity and the expression of its target genes, such as tumor necrosis factor α (TNF-α) and VEGF-A. In addition to inhibiting angiogenic properties of proliferation and tube formation, PR5-LL-CM01 blocked cell cycle progression at G1/S-phase in a dose-dependent manner in these cells. Thus, we provide the first evidence that inhibition of PRMT5 impedes angiogenesis in ocular endothelial cells, suggesting PRMT5 as a potential therapeutic target to ameliorate ocular neovascularization.Item The Potential of Aqueous Humor Sampling in Diagnosis, Prognosis, and Treatment of Retinoblastoma(Association for Research in Vision and Ophthalmology (ARVO), 2024) Muniyandi, Anbukkarasi; Jensen, Nathan R.; Devanathan, Nirupama; Dimaras, Helen; Corson, Timothy W.; Pharmacology and Toxicology, School of MedicineRetinoblastoma (RB) is a rare malignant tumor that arises in the developing retina in one or both eyes of children. Pathogenic variants of the RB1 tumor suppressor gene drive the majority of germline and sporadic RB tumors. Considering the risk of tumor spread, the biopsy of RB tumor tissue is contraindicated. Advancement of chemotherapy has led to preservation of more eye globes. However, this has reduced access to tumor material from enucleation specimens. Recently, liquid biopsy of aqueous humor (AH) has advanced the RB tumor- or eye-specific genetic analysis. In particular, nucleic acid analysis of AH demonstrates the genomic copy number profiles and RB1 pathogenic variants akin to that of enucleated RB eye tissue. This advance reduces the previous limitation that genetic assessment of the primary tumor could be done only after enucleation of the eye. Additionally, nucleic acid evaluation of AH allows the exploration of the genomic landscape of RB tumors at diagnosis and during and after treatment. This review explores how AH sampling and AH nucleic acid analysis in RB patients assist in diagnosis, prognosis, and comprehending the pathophysiology of RB, which will ultimately benefit individualized treatment decisions to carefully manage this ocular cancer in children.