- Browse by Author
Browsing by Author "Jamal, Mohamed"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Comparative Assessment of Pharyngeal Airway Dimensions in Skeletal Class I, II, and III Emirati Subjects: A Cone Beam Computed Tomography Study(MDPI, 2024-09-25) AlAskar, Sara; Jamal, Mohamed; Khamis, Amar Hassan; Ghoneima, Ahmed; School of DentistryThe aim of the current study was to evaluate the pharyngeal airway dimensions of individuals with different skeletal patterns in a cohort of the Emirati population. The specific aim was to assess the relationship between pharyngeal airway dimensions and anterior facial height in relation to different skeletal patterns. This retrospective study was conducted on a sample of 103 CBCT scans of adult Emirati subjects categorized into three groups according to their skeletal classification as indicated by the ANB angle: Class I (n = 35), Class II (n = 46), and Class III (n = 22). All CBCT scans were taken using an i-CAT CBCT imaging machine (Imaging Sciences, Hatfield, PA, USA). The age range of the patients was 19 to 68 years (62 women and 41 men). ANOVA, t-tests, Kruskal-Wallis, and Mann-Whitney tests were employed for comparing means among groups. The correlation coefficient was used to evaluate the association between variables. A p-value of less than 0.05 was considered statistically significant. This study revealed significant associations between various airway parameters and cephalometric measurements. Positive correlations were observed between nasal cavity volume and nasopharynx volume, as well as anterior facial height. Oropharynx volume exhibited positive correlations with hypopharynx volume and total airway volume, and negative correlations with overjet, ANB angle, and patient age. Hypopharynx volume correlated positively with total airway volume and the most constricted area of the airway (MCA). Total airway volume showed positive correlations with MCA and anterior facial height. MCA had negative correlations with ANB angle and patient age. Nasopharynx volume was significantly larger in the skeletal Class I group than in the Class II or Class III groups, while the other airway parameters showed no significant differences among the groups (p > 0.05). Several airway parameters showed a correlation with anterior facial height among the different skeletal patterns. Nasopharyngeal airway volume was significantly larger in the skeletal Class I group than in Class II and III groups in the studied sample.Item Specific mesoderm subset derived from human pluripotent stem cells ameliorates microvascular pathology in type 2 diabetic mice(American Association for the Advancement of Science, 2022) Gil, Chang-Hyun; Chakraborty, Dibyendu; Vieira, Cristiano P.; Prasain, Nutan; Calzi, Sergio Li; Fortmann, Seth D.; Hu, Ping; Banno, Kimihiko; Jamal, Mohamed; Huang, Chao; Sielski, Micheli S.; Lin, Yang; Huang, Xinxin; Dupont, Mariana D.; Floyd, Jason L.; Prasad, Ram; Longhini, Ana Leda F.; McGill, Trevor J.; Chung, Hyung-Min; Murphy, Michael P.; Kotton, Darrell N.; Boulton, Michael E.; Yoder, Mervin C.; Grant, Maria B.; Pediatrics, School of MedicineHuman induced pluripotent stem cells (hiPSCs) were differentiated into a specific mesoderm subset characterized by KDR+CD56+APLNR+ (KNA+) expression. KNA+ cells had high clonal proliferative potential and specification into endothelial colony-forming cell (ECFCs) phenotype. KNA+ cells differentiated into perfused blood vessels when implanted subcutaneously into the flank of nonobese diabetic/severe combined immunodeficient mice and when injected into the vitreous of type 2 diabetic mice (db/db mice). Transcriptomic analysis showed that differentiation of hiPSCs derived from diabetics into KNA+ cells was sufficient to change baseline differences in gene expression caused by the diabetic status and reprogram diabetic cells to a pattern similar to KNA+ cells derived from nondiabetic hiPSCs. Proteomic array studies performed on retinas of db/db mice injected with either control or diabetic donor-derived KNA+ cells showed correction of aberrant signaling in db/db retinas toward normal healthy retina. These data provide "proof of principle" that KNA+ cells restore perfusion and correct vascular dysfunction in db/db mice.