- Browse by Author
Browsing by Author "Hughes, Jason M."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A human pluripotent stem cell-derived in vitro model of the blood-brain barrier in cerebral malaria(Springer Nature, 2024-05-01) Gopinadhan, Adnan; Hughes, Jason M.; Conroy, Andrea L.; John, Chandy C.; Canfield, Scott G.; Datta, Dibyadyuti; Pediatrics, School of MedicineBackground: Blood-brain barrier (BBB) disruption is a central feature of cerebral malaria (CM), a severe complication of Plasmodium falciparum (Pf) infections. In CM, sequestration of Pf-infected red blood cells (Pf-iRBCs) to brain endothelial cells combined with inflammation, hemolysis, microvasculature obstruction and endothelial dysfunction mediates BBB disruption, resulting in severe neurologic symptoms including coma and seizures, potentially leading to death or long-term sequelae. In vitro models have advanced our knowledge of CM-mediated BBB disruption, but their physiological relevance remains uncertain. Using human induced pluripotent stem cell-derived brain microvascular endothelial cells (hiPSC-BMECs), we aimed to develop a novel in vitro model of the BBB in CM, exhibiting enhanced barrier properties. Methods: hiPSC-BMECs were co-cultured with HB3var03 strain Pf-iRBCs up to 9 h. Barrier integrity was measured using transendothelial electrical resistance (TEER) and sodium fluorescein permeability assays. Localization and expression of tight junction (TJ) proteins (occludin, zonula occludens-1, claudin-5), cellular adhesion molecules (ICAM-1, VCAM-1), and endothelial surface markers (EPCR) were determined using immunofluorescence imaging (IF) and western blotting (WB). Expression of angiogenic and cell stress markers were measured using multiplex proteome profiler arrays. Results: After 6-h of co-culture with Pf-iRBCs, hiPSC-BMECs showed reduced TEER and increased sodium fluorescein permeability compared to co-culture with uninfected RBCs, indicative of a leaky barrier. We observed disruptions in localization of occludin, zonula occludens-1, and claudin-5 by IF, but no change in protein expression by WB in Pf-iRBC co-cultures. Expression of ICAM-1 and VCAM-1 but not EPCR was elevated in hiPSC-BMECs with Pf-iRBC co-culture compared to uninfected RBC co-culture. In addition, there was an increase in expression of angiogenin, platelet factor-4, and phospho-heat shock protein-27 in the Pf-iRBCs co-culture compared to uninfected RBC co-culture. Conclusion: These findings demonstrate the validity of our hiPSC-BMECs based model of the BBB, that displays enhanced barrier integrity and appropriate TJ protein localization. In the hiPSC-BMEC co-culture with Pf-iRBCs, reduced TEER, increased paracellular permeability, changes in TJ protein localization, increase in expression of adhesion molecules, and markers of angiogenesis and cellular stress all point towards a novel model with enhanced barrier properties, suitable for investigating pathogenic mechanisms underlying BBB disruption in CM.Item The Effects of Propofol on a Human in vitro Blood-Brain Barrier Model(Frontiers Media, 2022-05-11) Hughes, Jason M.; Neese, Olivia R.; Bieber, Dylan D.; Lewis, Kirsten A.; Ahmadi, Layla M.; Parsons, Dustin W.; Canfield, Scott G.; Anatomy, Cell Biology and Physiology, School of MedicineBackground: Recently, the safety of repeated and lengthy anesthesia administration has been called into question, a subset of these animal studies demonstrated that anesthetics induced blood-brain barrier (BBB) dysfunction. The BBB is critical in protecting the brain parenchyma from the surrounding micro-vasculature. BBB breakdown and dysfunction has been observed in several neurodegenerative diseases and may contribute to both the initiation and the progression of the disease. In this study we utilize a human induced pluripotent stem cell (iPSC) derived-BBB model, exhibiting near in vivo properties, to evaluate the effects of anesthetics on critical barrier properties. Methods: iPSC-derived brain microvascular endothelial cells (BMECs) expressed near in vivo barrier tightness assessed by trans-endothelial electrical resistance and para-cellular permeability. Efflux transporter activity was determined by substrate transport in the presence of specific inhibitors. Trans-cellular transport was measured utilizing large fluorescently tagged dextran. Tight junction localization in BMECs was evaluated with fluorescent microscopy. The anesthetic, propofol was exposed to BMECs at varying durations and concentrations and BBB properties were monitored post-exposure. Results: Following propofol exposure, BMECs displayed reduced resistance and increased permeability indicative of a leaky barrier. Reduced barrier tightness and the dysregulation of occludin, a tight junction protein, were partly the result of an elevation in matrix metalloproteinase (MMP) levels. Efflux transporter activity and trans-cellular transport were unaffected by propofol exposure. Propofol induced barrier dysfunction was partially restored following matrix metalloproteinase inhibition. Conclusion: For the first time, we have demonstrated that propofol alters BBB integrity utilizing a human in vitro BBB model that displays key in vivo characteristics. A leaky BBB enables otherwise impermeable molecules such as pathogens and toxins the ability to reach vulnerable cell types of the brain parenchyma. A robust human in vitro BBB model will allow for the evaluation of several anesthetics at fluctuating clinical scenarios and to elucidate mechanisms with the goal of ultimately improving anesthesia safety.Item Exploring dysfunctional barrier phenotypes associated with glaucoma using a human pluripotent stem cell-based model of the neurovascular unit(Springer Nature, 2024-11-14) Lavekar, Sailee S.; Hughes, Jason M.; Gomes, Cátia; Huang, Kang-Chieh; Harkin, Jade; Canfield, Scott G.; Meyer, Jason S.; Biology, School of ScienceGlaucoma is a neurodegenerative disease that results in the degeneration of retinal ganglion cells (RGCs) and subsequent loss of vision. While RGCs are the primary cell type affected in glaucoma, neighboring cell types selectively modulate RGCs to maintain overall homeostasis. Among these neighboring cell types, astrocytes, microvascular endothelial cells (MVECs), and pericytes coordinate with neurons to form the neurovascular unit that provides a physical barrier to limit the passage of toxic materials from the blood into neural tissue. Previous studies have demonstrated that these barrier properties may be compromised in the progression of glaucoma, yet mechanisms by which this happens have remained incompletely understood. Thus, the goals of this study were to adapt a human pluripotent stem cell (hPSC)-based model of the neurovascular unit to the study of barrier integrity relevant to glaucoma. To achieve this, hPSCs were differentiated into the cell types that contribute to this barrier, including RGCs, astrocytes, and MVECs, then assembled into an established Transwell®-insert model. The ability of these cell types to contribute to an in vitro barrier model was tested for their ability to recapitulate characteristic barrier properties. Results revealed that barrier properties of MVECs were enhanced when cultured in the presence of RGCs and astrocytes compared to MVECs cultured alone. Conversely, the versatility of this system to model aspects of barrier dysfunction relevant to glaucoma was tested using an hPSC line with a glaucoma-specific Optineurin (E50K) mutation as well as a paired isogenic control, where MVECs then exhibited reduced barrier integrity. To identify factors that could result in barrier dysfunction, results revealed an increased expression of TGFβ2 in glaucoma-associated OPTN(E50K) astrocytes, indicating a potential role for TGFβ2 in disease manifestation. To test this hypothesis, we explored the ability to modulate exogenous TGFβ2 in both isogenic control and OPTN(E50K) experimental conditions. Collectively, the results of this study indicated that the repurposing of this in vitro barrier model for glaucoma reliably mimicked some aspects of barrier dysfunction, and may serve as a platform for drug discovery, as well as a powerful in vitro model to test the consequences of barrier dysfunction upon RGCs in glaucoma.Item Induction of astrocyte reactivity promotes neurodegeneration in human pluripotent stem cell models(Elsevier, 2024) Gomes, Cátia; Huang, Kang-Chieh; Harkin, Jade; Baker, Aaron; Hughes, Jason M.; Pan, Yanling; Tutrow, Kaylee; VanderWall, Kirstin B.; Lavekar, Sailee S.; Hernandez, Melody; Cummins, Theodore R.; Canfield, Scott G.; Meyer, Jason S.; Medical and Molecular Genetics, School of MedicineReactive astrocytes are known to exert detrimental effects upon neurons in several neurodegenerative diseases, yet our understanding of how astrocytes promote neurotoxicity remains incomplete, especially in human systems. In this study, we leveraged human pluripotent stem cell (hPSC) models to examine how reactivity alters astrocyte function and mediates neurodegeneration. hPSC-derived astrocytes were induced to a reactive phenotype, at which point they exhibited a hypertrophic profile and increased complement C3 expression. Functionally, reactive astrocytes displayed decreased intracellular calcium, elevated phagocytic capacity, and decreased contribution to the blood-brain barrier. Subsequently, co-culture of reactive astrocytes with a variety of neuronal cell types promoted morphological and functional alterations. Furthermore, when reactivity was induced in astrocytes from patient-specific hPSCs (glaucoma, Alzheimer's disease, and amyotrophic lateral sclerosis), the reactive state exacerbated astrocytic disease-associated phenotypes. These results demonstrate how reactive astrocytes modulate neurodegeneration, significantly contributing to our understanding of a role for reactive astrocytes in neurodegenerative diseases.