- Browse by Author
Browsing by Author "Huang, Tim H. M."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A modulator based regulatory network for ERα signaling pathway(Springer Nature, 2012) Wu, Heng-Yi; Zheng, Pengyue; Jiang, Guanglong; Liu, Yunlong; Nephew, Kenneth P.; Huang, Tim H. M.; Li, Lang; Center for Computational Biology and Bioinformatics, School of MedicineBackground: Estrogens control multiple functions of hormone-responsive breast cancer cells. They regulate diverse physiological processes in various tissues through genomic and non-genomic mechanisms that result in activation or repression of gene expression. Transcription regulation upon estrogen stimulation is a critical biological process underlying the onset and progress of the majority of breast cancer. ERα requires distinct co-regulator or modulators for efficient transcriptional regulation, and they form a regulatory network. Knowing this regulatory network will enable systematic study of the effect of ERα on breast cancer. Methods: To investigate the regulatory network of ERα and discover novel modulators of ERα functions, we proposed an analytical method based on a linear regression model to identify translational modulators and their network relationships. In the network analysis, a group of specific modulator and target genes were selected according to the functionality of modulator and the ERα binding. Network formed from targets genes with ERα binding was called ERα genomic regulatory network; while network formed from targets genes without ERα binding was called ERα non-genomic regulatory network. Considering the active or repressive function of ERα, active or repressive function of a modulator, and agonist or antagonist effect of a modulator on ERα, the ERα/modulator/target relationships were categorized into 27 classes. Results: Using the gene expression data and ERα Chip-seq data from the MCF-7 cell line, the ERα genomic/non-genomic regulatory networks were built by merging ERα/ modulator/target triplets (TF, M, T), where TF refers to the ERα, M refers to the modulator, and T refers to the target. Comparing these two networks, ERα non-genomic network has lower FDR than the genomic network. In order to validate these two networks, the same network analysis was performed in the gene expression data from the ZR-75.1 cell. The network overlap analysis between two cancer cells showed 1% overlap for the ERα genomic regulatory network, but 4% overlap for the non-genomic regulatory network. Conclusions: We proposed a novel approach to infer the ERα/modulator/target relationships, and construct the genomic/non-genomic regulatory networks in two cancer cells. We found that the non-genomic regulatory network is more reliable than the genomic regulatory network.Item Integrated analysis of genome-wide DNA methylation and gene expression profiles in molecular subtypes of breast cancer(Oxford University Press, 2013) Rhee, Je-Keun; Kim, Kwangsoo; Chae, Heejoon; Evans, Jared; Yan, Pearlly; Zhang, Byoung-Tak; Gray, Joe; Spellman, Paul; Huang, Tim H. M.; Nephew, Kenneth P.; Kim, Sun; Cellular and Integrative Physiology, School of MedicineAberrant DNA methylation of CpG islands, CpG island shores and first exons is known to play a key role in the altered gene expression patterns in all human cancers. To date, a systematic study on the effect of DNA methylation on gene expression using high resolution data has not been reported. In this study, we conducted an integrated analysis of MethylCap-sequencing data and Affymetrix gene expression microarray data for 30 breast cancer cell lines representing different breast tumor phenotypes. As well-developed methods for the integrated analysis do not currently exist, we created a series of four different analysis methods. On the computational side, our goal is to develop methylome data analysis protocols for the integrated analysis of DNA methylation and gene expression data on the genome scale. On the cancer biology side, we present comprehensive genome-wide methylome analysis results for differentially methylated regions and their potential effect on gene expression in 30 breast cancer cell lines representing three molecular phenotypes, luminal, basal A and basal B. Our integrated analysis demonstrates that methylation status of different genomic regions may play a key role in establishing transcriptional patterns in molecular subtypes of human breast cancer.Item RNA Polymerase II Binding Patterns Reveal Genomic Regions Involved in MicroRNA Gene Regulation(Public Library of Science, 2010-11-02) Wang, Guohua; Wang, Yadong; Shen, Changyu; Huangn, Yi-wen; Huang, Kun; Huang, Tim H. M.; Nephew, Kenneth P.; Li, Lang; Liu, Yunlong; Medicine, School of MedicineMicroRNAs are small non-coding RNAs involved in post-transcriptional regulation of gene expression. Due to the poor annotation of primary microRNA (pri-microRNA) transcripts, the precise location of promoter regions driving expression of many microRNA genes is enigmatic. This deficiency hinders our understanding of microRNA-mediated regulatory networks. In this study, we develop a computational approach to identify the promoter region and transcription start site (TSS) of pri-microRNAs actively transcribed using genome-wide RNA Polymerase II (RPol II) binding patterns derived from ChIP-seq data. Based upon the assumption that the distribution of RPol II binding patterns around the TSS of microRNA and protein coding genes are similar, we designed a statistical model to mimic RPol II binding patterns around the TSS of highly expressed, well-annotated promoter regions of protein coding genes. We used this model to systematically scan the regions upstream of all intergenic microRNAs for RPol II binding patterns similar to those of TSS from protein coding genes. We validated our findings by examining the conservation, CpG content, and activating histone marks in the identified promoter regions. We applied our model to assess changes in microRNA transcription in steroid hormone-treated breast cancer cells. The results demonstrate many microRNA genes have lost hormone-dependent regulation in tamoxifen-resistant breast cancer cells. MicroRNA promoter identification based upon RPol II binding patterns provides important temporal and spatial measurements regarding the initiation of transcription, and therefore allows comparison of transcription activities between different conditions, such as normal and disease states.Item The influence of cis-regulatory elements on DNA methylation fidelity(Public Library of Science, 2012) Teng, Mingxiang; Balch, Curt; Liu, Yunlong; Li, Meng; Huang, Tim H. M.; Wang, Yadong; Nephew, Kenneth P.; Li, Lang; Medical and Molecular Genetics, School of MedicineIt is now established that, as compared to normal cells, the cancer cell genome has an overall inverse distribution of DNA methylation ("methylome"), i.e., predominant hypomethylation and localized hypermethylation, within "CpG islands" (CGIs). Moreover, although cancer cells have reduced methylation "fidelity" and genomic instability, accurate maintenance of aberrant methylomes that underlie malignant phenotypes remains necessary. However, the mechanism(s) of cancer methylome maintenance remains largely unknown. Here, we assessed CGI methylation patterns propagated over 1, 3, and 5 divisions of A2780 ovarian cancer cells, concurrent with exposure to the DNA cross-linking chemotherapeutic cisplatin, and observed cell generation-successive increases in total hyper- and hypo-methylated CGIs. Empirical bayesian modeling revealed five distinct modes of methylation propagation: (1) heritable (i.e., unchanged) high-methylation (1186 probe loci in CGI microarray); (2) heritable (i.e., unchanged) low-methylation (286 loci); (3) stochastic hypermethylation (i.e., progressively increased, 243 loci); (4) stochastic hypomethylation (i.e., progressively decreased, 247 loci); and (5) considerable "random" methylation (582 loci). These results support a "stochastic model" of DNA methylation equilibrium deriving from the efficiency of two distinct processes, methylation maintenance and de novo methylation. A role for cis-regulatory elements in methylation fidelity was also demonstrated by highly significant (p<2.2×10(-5)) enrichment of transcription factor binding sites in CGI probe loci showing heritably high (118 elements) and low (47 elements) methylation, and also in loci demonstrating stochastic hyper-(30 elements) and hypo-(31 elements) methylation. Notably, loci having "random" methylation heritability displayed nearly no enrichment. These results demonstrate an influence of cis-regulatory elements on the nonrandom propagation of both strictly heritable and stochastically heritable CGIs.