- Browse by Author
Browsing by Author "Huang, Kun"
Now showing 1 - 10 of 84
Results Per Page
Sort Options
Item 302 Diagnostic Evidence Gauge of Spatial Transcriptomics (DEGAS-ST): Using transfer learning to map clinical data to spatial transcriptomics in prostate cancer(Cambridge University Press, 2024-04-03) Couetil, Justin; Alomari, Ahmed K.; Zhang, Jie; Huang, Kun; Johnson, Travis S.; Medical and Molecular Genetics, School of MedicineOBJECTIVES/GOALS: The 'field effect' is a concept in pathology that pre-malignant tissue changes forecast health. Spatial transcriptomics could detect these changes earlier than histopathology, suggesting new early cancer screening methods. Knowing how normal tissue damage relates to cancer’s origin and progression may improve long-term outcomes. METHODS/STUDY POPULATION: We trained DEGAS, our machine learning framework, with prostate cancer data, combining both general cancer patterns and in-depth genetic information from individual tumors. The Tumor Cancer Genome Atlas (TCGA) shows how gene patterns in tumors relate to patient outcomes, emphasizing the differences between tumors from different patients (intertumor). On the other hand, spatial transcriptomics (ST) shows the genetic variety within a single tumor (intratumor) but has limited samples, making it hard to know which genetic differences are important for treatment. DEGAS bridges these areas by finding tissue sections that resemble those in TCGA profiles and are key indicators of patient survival. DEGAS serves as a valuable tool for generating clinically-important hypotheses. RESULTS/ANTICIPATED RESULTS: DEGAS identified benign-appearing glands in a normal prostate as being highly associated with poor progression-free survival. These glands have transcriptional signatures similar to high-grade prostate cancer. We confirmed this finding in a separate prostate cancer ST dataset. By integrating single cell (SC) data we demonstrated that cells annotated as cancerous in the SC data map to regions of benign glands in the ST dataset. We pinpoint several genes, chiefly Microseminoprotein-β (MSMB, PSP94), where reduced expression is highly correlated with poor progression-free survival. Cell type specific differential expression analysis further revealed that loss of MSMB expression associated with poor outcomes occurs specifically in luminal epithelia, the putative progenitor of prostate cancer. DISCUSSION/SIGNIFICANCE: DEGAS reveals that normal-appearing tissue can be highly-associated with tumor progression and underscores the importance of the 'field effect' in cancer research. Traditional analysis may miss such nuance, hiding key transitional cell states. Validating gene markers could boost early cancer detection and understanding of metastasis.Item A Deep Language Model for Symptom Extraction From Clinical Text and its Application to Extract COVID-19 Symptoms From Social Media(IEEE, 2022) Luo, Xiao; Gandhi, Priyanka; Storey, Susan; Huang, Kun; Biostatistics and Health Data Science, School of MedicinePatients experience various symptoms when they have either acute or chronic diseases or undergo some treatments for diseases. Symptoms are often indicators of the severity of the disease and the need for hospitalization. Symptoms are often described in free text written as clinical notes in the Electronic Health Records (EHR) and are not integrated with other clinical factors for disease prediction and healthcare outcome management. In this research, we propose a novel deep language model to extract patient-reported symptoms from clinical text. The deep language model integrates syntactic and semantic analysis for symptom extraction and identifies the actual symptoms reported by patients and conditional or negation symptoms. The deep language model can extract both complex and straightforward symptom expressions. We used a real-world clinical notes dataset to evaluate our model and demonstrated that our model achieves superior performance compared to three other state-of-the-art symptom extraction models. We extensively analyzed our model to illustrate its effectiveness by examining each component’s contribution to the model. Finally, we applied our model on a COVID-19 tweets data set to extract COVID-19 symptoms. The results show that our model can identify all the symptoms suggested by CDC ahead of their timeline and many rare symptoms.Item A target discovery pipeline identified ILT3 as a target for immunotherapy of multiple myeloma(Elsevier, 2023) Di Meo, Francesco; Iyer, Anjushree; Akama, Keith; Cheng, Rujin; Yu, Christina; Cesarano, Annamaria; Kurihara, Noriyoshi; Tenshin, Hirofumi; Aljoufi, Arafat; Marino, Silvia; Soni, Rajesh K.; Roda, Julie; Sissons, James; Vu, Ly P.; Guzman, Monica; Huang, Kun; Laskowski, Tamara; Broxmeyer, Hal E.; Roodman, David G.; Perna, Fabiana; Medicine, School of MedicineMultiple myeloma (MM) is an incurable malignancy of plasma cells. To identify targets for MM immunotherapy, we develop an integrated pipeline based on mass spectrometry analysis of seven MM cell lines and RNA sequencing (RNA-seq) from 900+ patients. Starting from 4,000+ candidates, we identify the most highly expressed cell surface proteins. We annotate candidate protein expression in many healthy tissues and validate the expression of promising targets in 30+ patient samples with relapsed/refractory MM, as well as in primary healthy hematopoietic stem cells and T cells by flow cytometry. Six candidates (ILT3, SEMA4A, CCR1, LRRC8D, FCRL3, IL12RB1) and B cell maturation antigen (BCMA) present the most favorable profile in malignant and healthy cells. We develop a bispecific T cell engager targeting ILT3 that shows potent killing effects in vitro and decreased tumor burden and prolonged mice survival in vivo, suggesting therapeutic relevance. Our study uncovers MM-associated antigens that hold great promise for immune-based therapies of MM.Item Aberrant cholesterol metabolism in colorectal cancer represents a targetable vulnerability(Elsevier, 2023-07) Xie, Jingwu; Nguyen, Chi Mai; Turk, Anita; Nan, Hongmei; Imperiale, Thomas F.; House, Michael; Huang, Kun; Su, Jing; Biostatistics, School of Public HealthItem Advancing Systems Biology in the International Conference on Intelligent Biology and Medicine (ICIBM) 2015(BioMed Central, 2016-08-26) Zhao, Zhongming; Liu, Yunlong; Huang, Yufei; Huang, Kun; Ruan, Jianhua; Department of Medical and Molecular Genetics, IU School of MedicineThe 2015 International Conference on Intelligent Biology and Medicine (ICIBM 2015) was held on November 13-15, 2015 in Indianapolis, Indiana, USA. ICIBM 2015 included eight scientific sessions, three tutorial sessions, one poster session, and four keynote presentations that covered the frontier research in broad areas related to bioinformatics, systems biology, big data science, biomedical informatics, pharmacogenomics, and intelligent computing. Here, we present a summary of the 10 research articles that were selected from ICIBM 2015 and included in the supplement to BMC Systems Biology.Item AI in Medical Imaging Informatics: Current Challenges and Future Directions(IEEE, 2020-07) Panayides, Andreas S.; Amini, Amir; Filipovic, Nenad D.; Sharma, Ashish; Tsaftaris, Sotirios A.; Young, Alistair; Foran, David; Do, Nhan; Golemati, Spyretta; Kurc, Tahsin; Huang, Kun; Nikita, Konstantina S.; Veasey, Ben P.; Zervakis, Michalis; Saltz, Joel H.; Pattichis, Constantinos S.; Biostatistics & Health Data Science, School of MedicineThis paper reviews state-of-the-art research solutions across the spectrum of medical imaging informatics, discusses clinical translation, and provides future directions for advancing clinical practice. More specifically, it summarizes advances in medical imaging acquisition technologies for different modalities, highlighting the necessity for efficient medical data management strategies in the context of AI in big healthcare data analytics. It then provides a synopsis of contemporary and emerging algorithmic methods for disease classification and organ/ tissue segmentation, focusing on AI and deep learning architectures that have already become the de facto approach. The clinical benefits of in-silico modelling advances linked with evolving 3D reconstruction and visualization applications are further documented. Concluding, integrative analytics approaches driven by associate research branches highlighted in this study promise to revolutionize imaging informatics as known today across the healthcare continuum for both radiology and digital pathology applications. The latter, is projected to enable informed, more accurate diagnosis, timely prognosis, and effective treatment planning, underpinning precision medicine.Item AIscEA: unsupervised integration of single-cell gene expression and chromatin accessibility via their biological consistency(Oxford University Press, 2022) Jafari, Elham; Johnson, Travis; Wang, Yue; Liu, Yunlong; Huang, Kun; Wang, Yijie; Biostatistics and Health Data Science, School of MedicineMotivation: The integrative analysis of single-cell gene expression and chromatin accessibility measurements is essential for revealing gene regulation, but it is one of the key challenges in computational biology. Gene expression and chromatin accessibility are measurements from different modalities, and no common features can be directly used to guide integration. Current state-of-the-art methods lack practical solutions for finding heterogeneous clusters. However, previous methods might not generate reliable results when cluster heterogeneity exists. More importantly, current methods lack an effective way to select hyper-parameters under an unsupervised setting. Therefore, applying computational methods to integrate single-cell gene expression and chromatin accessibility measurements remains difficult. Results: We introduce AIscEA-Alignment-based Integration of single-cell gene Expression and chromatin Accessibility-a computational method that integrates single-cell gene expression and chromatin accessibility measurements using their biological consistency. AIscEA first defines a ranked similarity score to quantify the biological consistency between cell clusters across measurements. AIscEA then uses the ranked similarity score and a novel permutation test to identify cluster alignment across measurements. AIscEA further utilizes graph alignment for the aligned cell clusters to align the cells across measurements. We compared AIscEA with the competing methods on several benchmark datasets and demonstrated that AIscEA is highly robust to the choice of hyper-parameters and can better handle the cluster heterogeneity problem. Furthermore, AIscEA significantly outperforms the state-of-the-art methods when integrating real-world SNARE-seq and scMultiome-seq datasets in terms of integration accuracy. Availability and implementation: AIscEA is available at https://figshare.com/articles/software/AIscEA_zip/21291135 on FigShare as well as {https://github.com/elhaam/AIscEA} onGitHub.Item AIscEA: unsupervised integration of single-cell gene expression and chromatin accessibility via their biological consistency(Oxford, 2022-12-01) Jafari, Elham; Johnson, Travis; Wang, Yue; Liu, Yunlong; Huang, Kun; Wang, Yijie; Biostatistics and Health Data Science, School of MedicineMotivation The integrative analysis of single-cell gene expression and chromatin accessibility measurements is essential for revealing gene regulation, but it is one of the key challenges in computational biology. Gene expression and chromatin accessibility are measurements from different modalities, and no common features can be directly used to guide integration. Current state-of-the-art methods lack practical solutions for finding heterogeneous clusters. However, previous methods might not generate reliable results when cluster heterogeneity exists. More importantly, current methods lack an effective way to select hyper-parameters under an unsupervised setting. Therefore, applying computational methods to integrate single-cell gene expression and chromatin accessibility measurements remains difficult. Results We introduce AIscEA—Alignment-based Integration of single-cell gene Expression and chromatin Accessibility—a computational method that integrates single-cell gene expression and chromatin accessibility measurements using their biological consistency. AIscEA first defines a ranked similarity score to quantify the biological consistency between cell clusters across measurements. AIscEA then uses the ranked similarity score and a novel permutation test to identify cluster alignment across measurements. AIscEA further utilizes graph alignment for the aligned cell clusters to align the cells across measurements. We compared AIscEA with the competing methods on several benchmark datasets and demonstrated that AIscEA is highly robust to the choice of hyper-parameters and can better handle the cluster heterogeneity problem. Furthermore, AIscEA significantly outperforms the state-of-the-art methods when integrating real-world SNARE-seq and scMultiome-seq datasets in terms of integration accuracy. Availability and implementation AIscEA is available at https://figshare.com/articles/software/AIscEA_zip/21291135 on FigShare as well as {https://github.com/elhaam/AIscEA} onGitHub.Item An Open Source Platform for Computational Histopathology(IEEE, 2021) Yu, Xiaxia; Zhao, Bingshuai; Huang, Haofan; Tian, Mu; Zhang, Sai; Song, Hongping; Li, Zengshan; Huang, Kun; Gao, Yi; Biostatistics and Health Data Science, School of MedicineComputational histopathology is a fast emerging field which converts the traditional glass slide based department to a new examination platform. Such a paradigm shift also brings the in silico computation to the field. Much research have been presented in the past decades on the algorithm development for pathology image analysis. On the other hand, a comprehensive software platform with advanced visualization and computation capability, large developer community, flexible plugin mechanism, and friendly transnational license, would be extremely beneficial for the entire community. In this work, we present SlicerScope: an open platform for whole slide histopathology image computing based on the highly successful 3D Slicer. We present rationale on the choice of such an architecture, introducing new modules/tools for giga-pixel whole slide image viewing, and four specific analytical modules for qualitative presentation, nucleus level analysis, tissue scale computation, and 3D pathology. The entire software is publicly available at https://slicerscope.github.io/ , facilitating the algorithmic, clinical, and transnational researches.Item Analyzing the symptoms in colorectal and breast cancer patients with or without type 2 diabetes using EHR data(Sage, 2021) Luo, Xiao; Storey, Susan; Gandhi, Priyanka; Zhang, Zuoyi; Metzger, Megan; Huang, Kun; Computer Information and Graphics Technology, School of Engineering and TechnologyThis research extracted patient-reported symptoms from free-text EHR notes of colorectal and breast cancer patients and studied the correlation of the symptoms with comorbid type 2 diabetes, race, and smoking status. An NLP framework was developed first to use UMLS MetaMap to extract all symptom terms from the 366,398 EHR clinical notes of 1694 colorectal cancer (CRC) patients and 3458 breast cancer (BC) patients. Semantic analysis and clustering algorithms were then developed to categorize all the relevant symptoms into eight symptom clusters defined by seed terms. After all the relevant symptoms were extracted from the EHR clinical notes, the frequency of the symptoms reported from colorectal cancer (CRC) and breast cancer (BC) patients over three time-periods post-chemotherapy was calculated. Logistic regression (LR) was performed with each symptom cluster as the response variable while controlling for diabetes, race, and smoking status. The results show that the CRC and BC patients with Type 2 Diabetes (T2D) were more likely to report symptoms than CRC and BC without T2D over three time-periods in the cancer trajectory. We also found that current smokers were more likely to report anxiety (CRC, BC), neuropathic symptoms (CRC, BC), anxiety (BC), and depression (BC) than non-smokers.