- Browse by Author
Browsing by Author "Huang, Jie"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item A multiancestry genome-wide association study of unexplained chronic ALT elevation as a proxy for nonalcoholic fatty liver disease with histological and radiological validation(Springer Nature, 2022) Vujkovic, Marijana; Ramdas, Shweta; Lorenz, Kim M.; Guo, Xiuqing; Darlay, Rebecca; Cordell, Heather J.; He, Jing; Gindin, Yevgeniy; Chung, Chuhan; Myers, Robert P.; Schneider, Carolin V.; Park, Joseph; Lee, Kyung Min; Serper, Marina; Carr, Rotonya M.; Kaplan, David E.; Haas, Mary E.; MacLean, Matthew T.; Witschey, Walter R.; Zhu, Xiang; Tcheandjieu, Catherine; Kember, Rachel L.; Kranzler, Henry R.; Verma, Anurag; Giri, Ayush; Klarin, Derek M.; Sun, Yan V.; Huang, Jie; Huffman, Jennifer E.; Townsend Creasy, Kate; Hand, Nicholas J.; Liu, Ching-Ti; Long, Michelle T.; Yao, Jie; Budoff, Matthew; Tan, Jingyi; Li, Xiaohui; Lin, Henry J.; Chen, Yii-Der Ida; Taylor, Kent D.; Chang, Ruey-Kang; Krauss, Ronald M.; Vilarinho, Silvia; Brancale, Joseph; Nielsen, Jonas B.; Locke, Adam E.; Jones, Marcus B.; Verweij, Niek; Baras, Aris; Reddy, K. Rajender; Neuschwander-Tetri, Brent A.; Schwimmer, Jeffrey B.; Sanyal, Arun J.; Chalasani, Naga; Ryan, Kathleen A.; Mitchell, Braxton D.; Gill, Dipender; Wells, Andrew D.; Manduchi, Elisabetta; Saiman, Yedidya; Mahmud, Nadim; Miller, Donald R.; Reaven, Peter D.; Phillips, Lawrence S.; Muralidhar, Sumitra; DuVall, Scott L.; Lee, Jennifer S.; Assimes, Themistocles L.; Pyarajan, Saiju; Cho, Kelly; Edwards, Todd L.; Damrauer, Scott M.; Wilson, Peter W.; Gaziano, J. Michael; O'Donnell, Christopher J.; Khera, Amit V.; Grant, Struan F. A.; Brown, Christopher D.; Tsao, Philip S.; Saleheen, Danish; Lotta, Luca A.; Bastarache, Lisa; Anstee, Quentin M.; Daly, Ann K.; Meigs, James B.; Rotter, Jerome I.; Lynch, Julie A.; Regeneron Genetics Center; Geisinger-Regeneron DiscovEHR Collaboration; EPoS Consortium; VA Million Veteran Program; Rader, Daniel J.; Voight, Benjamin F.; Chang, Kyong-Mi; Medicine, School of MedicineNonalcoholic fatty liver disease (NAFLD) is a growing cause of chronic liver disease. Using a proxy NAFLD definition of chronic elevation of alanine aminotransferase (cALT) levels without other liver diseases, we performed a multiancestry genome-wide association study (GWAS) in the Million Veteran Program (MVP) including 90,408 cALT cases and 128,187 controls. Seventy-seven loci exceeded genome-wide significance, including 25 without prior NAFLD or alanine aminotransferase associations, with one additional locus identified in European American-only and two in African American-only analyses (P < 5 × 10-8). External replication in histology-defined NAFLD cohorts (7,397 cases and 56,785 controls) or radiologic imaging cohorts (n = 44,289) replicated 17 single-nucleotide polymorphisms (SNPs) (P < 6.5 × 10-4), of which 9 were new (TRIB1, PPARG, MTTP, SERPINA1, FTO, IL1RN, COBLL1, APOH and IFI30). Pleiotropy analysis showed that 61 of 77 multiancestry and all 17 replicated SNPs were jointly associated with metabolic and/or inflammatory traits, revealing a complex model of genetic architecture. Our approach integrating cALT, histology and imaging reveals new insights into genetic liability to NAFLD.Item Aberrant epigenetic and transcriptional events associated with breast cancer risk(BMC, 2022-02-09) Marino, Natascia; German, Rana; Podicheti, Ram; Rusch, Douglas B.; Rockey, Pam; Huang, Jie; Sandusky, George E.; Temm, Constance J.; Althouse, Sandra; Nephew, Kenneth P.; Nakshatri, Harikrishna; Liu, Jun; Vode, Ashley; Cao, Sha; Storniolo, Anna Maria V.; Medicine, School of MedicineBackground: Genome-wide association studies have identified several breast cancer susceptibility loci. However, biomarkers for risk assessment are still missing. Here, we investigated cancer-related molecular changes detected in tissues from women at high risk for breast cancer prior to disease manifestation. Disease-free breast tissue cores donated by healthy women (N = 146, median age = 39 years) were processed for both methylome (MethylCap) and transcriptome (Illumina's HiSeq4000) sequencing. Analysis of tissue microarray and primary breast epithelial cells was used to confirm gene expression dysregulation. Results: Transcriptomic analysis identified 69 differentially expressed genes between women at high and those at average risk of breast cancer (Tyrer-Cuzick model) at FDR < 0.05 and fold change ≥ 2. Majority of the identified genes were involved in DNA damage checkpoint, cell cycle, and cell adhesion. Two genes, FAM83A and NEK2, were overexpressed in tissue sections (FDR < 0.01) and primary epithelial cells (p < 0.05) from high-risk breasts. Moreover, 1698 DNA methylation changes were identified in high-risk breast tissues (FDR < 0.05), partially overlapped with cancer-related signatures, and correlated with transcriptional changes (p < 0.05, r ≤ 0.5). Finally, among the participants, 35 women donated breast biopsies at two time points, and age-related molecular alterations enhanced in high-risk subjects were identified. Conclusions: Normal breast tissue from women at high risk of breast cancer bears molecular aberrations that may contribute to breast cancer susceptibility. This study is the first molecular characterization of the true normal breast tissues, and provides an opportunity to investigate molecular markers of breast cancer risk, which may lead to new preventive approaches.Item Brigatinib causes tumor shrinkage in both NF2-deficient meningioma and schwannoma through inhibition of multiple tyrosine kinases but not ALK(PLOS, 2021-07-15) Chang, Long-Sheng; Oblinger, Janet L.; Smith, Abbi E.; Ferrer, Marc; Angus, Steven P.; Hawley, Eric; Petrilli, Alejandra M.; Beauchamp, Roberta L.; Riecken, Lars Björn; Erdin, Serkan; Poi, Ming; Huang, Jie; Bessler, Waylan K.; Zhang, Xiaohu; Guha, Rajarshi; Thomas, Craig; Burns, Sarah S.; Gilbert, Thomas S.K.; Jiang, Li; Li, Xiaohong; Lu, Qingbo; Yuan, Jin; He, Yongzheng; Dixon, Shelley A.H.; Masters, Andrea; Jones, David R.; Yates, Charles W.; Haggarty, Stephen J.; La Rosa, Salvatore; Welling, D. Bradley; Stemmer-Rachamimov, Anat O.; Plotkin, Scott R.; Gusella, James F.; Guinney, Justin; Morrison, Helen; Ramesh, Vijaya; Fernandez-Valle, Cristina; Johnson, Gary L.; Blakeley, Jaishri O.; Clapp, D. Wade; Pediatrics, School of MedicineNeurofibromatosis Type 2 (NF2) is an autosomal dominant genetic syndrome caused by mutations in the NF2 tumor suppressor gene resulting in multiple schwannomas and meningiomas. There are no FDA approved therapies for these tumors and their relentless progression results in high rates of morbidity and mortality. Through a combination of high throughput screens, preclinical in vivo modeling, and evaluation of the kinome en masse, we identified actionable drug targets and efficacious experimental therapeutics for the treatment of NF2 related schwannomas and meningiomas. These efforts identified brigatinib (ALUNBRIG®), an FDA-approved inhibitor of multiple tyrosine kinases including ALK, to be a potent inhibitor of tumor growth in established NF2 deficient xenograft meningiomas and a genetically engineered murine model of spontaneous NF2 schwannomas. Surprisingly, neither meningioma nor schwannoma cells express ALK. Instead, we demonstrate that brigatinib inhibited multiple tyrosine kinases, including EphA2, Fer and focal adhesion kinase 1 (FAK1). These data demonstrate the power of the de novo unbiased approach for drug discovery and represents a major step forward in the advancement of therapeutics for the treatment of NF2 related malignancies.Item QKI is a critical pre-mRNA alternative splicing regulator of cardiac myofibrillogenesis and contractile function(Springer Nature, 2021-01-04) Chen, Xinyun; Liu, Ying; Xu, Chen; Ba, Lina; Liu, Zhuo; Li, Xiuya; Huang, Jie; Simpson, Ed; Gao, Hongyu; Cao, Dayan; Sheng, Wei; Qi, Hanping; Ji, Hongrui; Sanderson, Maria; Cai, Chen-Leng; Li, Xiaohui; Yang, Lei; Na, Jie; Yamamura, Kenichi; Liu, Yunlong; Huang, Guoying; Shou, Weinian; Sun, Ning; Pediatrics, School of MedicineThe RNA-binding protein QKI belongs to the hnRNP K-homology domain protein family, a well-known regulator of pre-mRNA alternative splicing and is associated with several neurodevelopmental disorders. Qki is found highly expressed in developing and adult hearts. By employing the human embryonic stem cell (hESC) to cardiomyocyte differentiation system and generating QKI-deficient hESCs (hESCs-QKIdel) using CRISPR/Cas9 gene editing technology, we analyze the physiological role of QKI in cardiomyocyte differentiation, maturation, and contractile function. hESCs-QKIdel largely maintain normal pluripotency and normal differentiation potential for the generation of early cardiogenic progenitors, but they fail to transition into functional cardiomyocytes. In this work, by using a series of transcriptomic, cell and biochemical analyses, and the Qki-deficient mouse model, we demonstrate that QKI is indispensable to cardiac sarcomerogenesis and cardiac function through its regulation of alternative splicing in genes involved in Z-disc formation and contractile physiology, suggesting that QKI is associated with the pathogenesis of certain forms of cardiomyopathies.Item RXR negatively regulates ex vivo expansion of human cord blood hematopoietic stem and progenitor cells(SpringerLink, 2021-08) Jin, Yuting; Huang, Jie; Wang, Qin; He, Jiefeng; Teng, Yincheng; Jiang, Rongzhen; Broxmeyer, Hal E.; Guo, Bin; Microbiology and Immunology, School of MedicineEx vivo expansion of human cord blood (CB) hematopoietic stem cells (HSCs) is one approach to overcome limited numbers of HSCs in single CB units. However, there is still no worldwide acceptable HSC ex vivo expansion system. A main reason is that we still have very limited knowldege regarding mechanisms underlying maintenance and expansion of CB HSCs. Here we report that retinoid X receptor (RXR) activity is of significance for CB HSC ex vivo expansion. RXR antagonist HX531 significantly promoted ex vivo expansion of CB HSCs and progenitor cells (HPCs). RXR agonist Bexarotene notably suppressed ex vivo expansion of CB HSCs. Activation of RXR by Bexarotene significantly blocked expansion of phenotypic HSCs and HPCs and expressed increased functional HPCs as assessed by colony formation induced by UM171 and SR1. In vivo transplantation experiments in immune-deficient mice demonstrated that HX531 expanded CB HSCs possess long-term reconstituting capacities, and Bexarotene treatment inhibited expansion of functional CB HSCs. RNA-seq analysis revealed that RXR regulates expression of FBP1 (a negative regulator of glucose metabolism) and many genes involved in differentation. ECAR analysis showed that HX531 significantly promoted glycolytic activity of CB CD34+ HSCs and HPCs. Our studies suggest that RXR is a negative regulator of ex vivo expansion of CB HSCs and HPCs.