- Browse by Author
Browsing by Author "Howland, John G."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The Rat Medial Prefrontal Cortex Exhibits Flexible Neural Activity States during the Performance of an Odor Span Task(Society for Neuroscience, 2019-03-26) De Falco, Emanuela; An, Lei; Sun, Ninglei; Roebuck, Andrew J.; Greba, Quentin; Lapish, Christopher C.; Howland, John G.; Psychology, School of ScienceMedial prefrontal cortex (mPFC) activity is fundamental for working memory (WM), attention, and behavioral inhibition; however, a comprehensive understanding of the neural computations underlying these processes is still forthcoming. Toward this goal, neural recordings were obtained from the mPFC of awake, behaving rats performing an odor span task of WM capacity. Neural populations were observed to encode distinct task epochs and the transitions between epochs were accompanied by abrupt shifts in neural activity patterns. Putative pyramidal neuron activity increased earlier in the delay for sessions where rats achieved higher spans. Furthermore, increased putative interneuron activity was only observed at the termination of the delay thus indicating that local processing in inhibitory networks was a unique feature to initiate foraging. During foraging, changes in neural activity patterns associated with the approach to a novel odor, but not familiar odors, were robust. Collectively, these data suggest that distinct mPFC activity states underlie the delay, foraging, and reward epochs of the odor span task. Transitions between these states likely enables adaptive behavior in dynamic environments that place strong demands on the substrates of working memory.Item The rodent medial prefrontal cortex and associated circuits in orchestrating adaptive behavior under variable demands(Elsevier, 2022) Howland, John G.; Ito, Rutsuko; Lapish, Christopher C.; Villaruel, Franz R.; Psychology, School of ScienceEmerging evidence implicates rodent medial prefrontal cortex (mPFC) in tasks requiring adaptation of behavior to changing information from external and internal sources. However, the computations within mPFC and subsequent outputs that determine behavior are incompletely understood. We review the involvement of mPFC subregions, and their projections to the striatum and amygdala in two broad types of tasks in rodents: 1) appetitive and aversive Pavlovian and operant conditioning tasks that engage mPFC-striatum and mPFC-amygdala circuits, and 2) foraging-based tasks that require decision making to optimize reward. We find support for region-specific function of the mPFC, with dorsal mPFC and its projections to the dorsomedial striatum supporting action control with higher cognitive demands, and ventral mPFC engagement in translating affective signals into behavior via discrete projections to the ventral striatum and amygdala. However, we also propose that defined mPFC subdivisions operate as a functional continuum rather than segregated functional units, with crosstalk that allows distinct subregion-specific inputs (e.g., internal, affective) to influence adaptive behavior supported by other subregions.