- Browse by Author
Browsing by Author "Hertz, Daniel L."
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item Bevacizumab-induced hypertension and proteinuria: a genome-wide study of more than 1000 patients(Springer Nature, 2022) Quintanilha, Julia C.F.; Wang, Jin; Sibley, Alexander B.; Jiang, Chen; Etheridge, Amy S.; Shen, Fei; Jiang, Guanglong; Mulkey, Flora; Patel, Jai N.; Hertz, Daniel L.; Dees, Elizabeth Claire; McLeod, Howard L.; Bertagnolli, Monica; Rugo, Hope; Kindler, Hedy L.; Kelly, William Kevin; Ratain, Mark J.; Kroetz, Deanna L.; Owzar, Kouros; Schneider, Bryan P.; Lin, Danyu; Innocenti, Federico; Medicine, School of MedicineBackground: Hypertension and proteinuria are common bevacizumab-induced toxicities. No validated biomarkers are available for identifying patients at risk of these toxicities. Methods: A genome-wide association study (GWAS) meta-analysis was performed in 1039 bevacizumab-treated patients of European ancestry in four clinical trials (CALGB 40502, 40503, 80303, 90401). Grade ≥2 hypertension and proteinuria were recorded (CTCAE v.3.0). Single-nucleotide polymorphism (SNP)-toxicity associations were determined using a cause-specific Cox model adjusting for age and sex. Results: The most significant SNP associated with hypertension with concordant effect in three out of the four studies (p-value <0.05 for each study) was rs6770663 (A > G) in KCNAB1, with the G allele increasing the risk of hypertension (p-value = 4.16 × 10-6). The effect of the G allele was replicated in ECOG-ACRIN E5103 in 582 patients (p-value = 0.005). The meta-analysis of all five studies for rs6770663 led to p-value = 7.73 × 10-8, close to genome-wide significance. The most significant SNP associated with proteinuria was rs339947 (C > A, between DNAH5 and TRIO), with the A allele increasing the risk of proteinuria (p-value = 1.58 × 10-7). Conclusions: The results from the largest study of bevacizumab toxicity provide new markers of drug safety for further evaluations. SNP in KCNAB1 validated in an independent dataset provides evidence toward its clinical applicability to predict bevacizumab-induced hypertension.Item Correction: Bevacizumab-induced hypertension and proteinuria: a genome-wide study of more than 1000 patients(Springer Nature, 2022) Quintanilha, Julia C.F.; Wang, Jin; Sibley, Alexander B.; Jiang, Chen; Etheridge, Amy S.; Shen, Fei; Jiang, Guanglong; Mulkey, Flora; Patel, Jai N.; Hertz, Daniel L.; Dees, Elizabeth Claire; McLeod, Howard L.; Bertagnolli, Monica; Rugo, Hope; Kindler, Hedy L.; Kelly, William Kevin; Ratain, Mark J.; Kroetz, Deanna L.; Owzar, Kouros; Schneider, Bryan P.; Lin, Danyu; Innocenti, Federico; Medicine, School of MedicineCorrection to: British Journal of Cancer 10.1038/s41416-021-01557-w, published online 06 October 2021 The original version of this article unfortunately contained a mistake in an author affiliation. Dr. Kouros Owzar was listed as “Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA”, when it should be “Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA”. The original article has been corrected.Item ESR1 and PGR polymorphisms are associated with estrogen and progesterone receptor expression in breast tumors(American Physiological Society, 2016-09-01) Hertz, Daniel L.; Henry, N. Lynn; Kidwell, Kelley M.; Thomas, Dafydd; Goddard, Audrey; Azzouz, Faouzi; Speth, Kelly; Li, Lang; Banerjee, Mousumi; Thibert, Jacklyn N.; Kleer, Celina G.; Stearns, Vered; Hayes, Daniel F.; Skaar, Todd C.; Rae, James M.; Medicine, School of MedicineHormone receptor-positive (HR+) breast cancers express the estrogen (ERα) and/or progesterone (PgR) receptors. Inherited single nucleotide polymorphisms (SNPs) in ESR1, the gene encoding ERα, have been reported to predict tamoxifen effectiveness. We hypothesized that these associations could be attributed to altered tumor gene/protein expression of ESR1/ERα and that SNPs in the PGR gene predict tumor PGR/PgR expression. Formalin-fixed paraffin-embedded breast cancer tumor specimens were analyzed for ESR1 and PGR gene transcript expression by the reverse transcription polymerase chain reaction based Oncotype DX assay and for ERα and PgR protein expression by immunohistochemistry (IHC) and an automated quantitative immunofluorescence assay (AQUA). Germline genotypes for SNPs in ESR1 (n = 41) and PGR (n = 8) were determined by allele-specific TaqMan assays. One SNP in ESR1 (rs9322336) was significantly associated with ESR1 gene transcript expression (P = 0.006) but not ERα protein expression (P > 0.05). A PGR SNP (rs518162) was associated with decreased PGR gene transcript expression (P = 0.003) and PgR protein expression measured by IHC (P = 0.016), but not AQUA (P = 0.054). There were modest, but statistically significant correlations between gene and protein expression for ESR1/ERα and PGR/PgR and for protein expression measured by IHC and AQUA (Pearson correlation = 0.32–0.64, all P < 0.001). Inherited ESR1 and PGR genotypes may affect tumor ESR1/ERα and PGR/PgR expression, respectively, which are moderately correlated. This work supports further research into germline predictors of tumor characteristics and treatment effectiveness, which may someday inform selection of hormonal treatments for patients with HR+ breast cancer.Item Exemestane may be less detrimental than letrozole to bone health in women homozygous for the UGT2B17*2 gene deletion(Springer, 2019-02-12) Kamdem, Landry K.; Xi, Jingyue; Clark, Brandi L.; Gregory, Bryana J.; Kidwell, Kelley M.; Storniolo, Ana-Maria; Stearns, Vered; Hayes, Daniel F.; Gersch, Christina L.; Rae, James M.; Henry, N. Lynn; Hertz, Daniel L.; Medicine, School of MedicinePurpose: UGT2B17 gene deletion (UGT2B17*2) has been reported to affect bone health as well as the pharmacokinetics of aromatase inhibitor (AI) drugs such as exemestane. The goal of this study was to assess associations between UGT2B17 gene deletion and bone health prior to and after 24 months of AI treatment in postmenopausal women with hormone receptor positive (HR+) breast cancer. Methods: Bone health in women with HR+ breast cancer enrolled on the prospective randomized Exemestane and Letrozole Pharmacogenetics (ELPh) trial was determined by measuring bone turnover markers (BTM) and bone mineral density (BMD) pre-treatment and after 3 BTM and 24 BMD months of treatment with either the steroidal AI exemestane or the nonsteroidal AI letrozole. DNA samples were genotyped for UGT2B17*2. Results: Of the 455 subjects included in the analyses, 244 (53.6%) carried at least one copy of UGT2B17*2. UGT2B17*2 was associated with lower pre-treatment BMD at the hip (P = 0.01) and spine (P = 0.0076). Letrozole treatment was associated with a greater decrease in BMD of the hip (P = 0.03) and spine (P = 0.03) than exemestane. UGT2B17 genotype was not associated with changes in BMD from 24 months of AI treatment, though in UGT2B17*2 homozygous patients, there was a trend toward greater decreases in BMD of the spine from treatment with letrozole compared with exemestane (P = 0.05). Conclusion: UGT2B17*2 may be associated with lower baseline BMD in women with HR+ breast cancer. Exemestane is less detrimental to bone health than letrozole in postmenopausal women treated with AI, and this effect may be confined to patients carrying UGT2B17*2, though this finding requires independent validation.Item Genome-wide association study of aromatase inhibitor discontinuation due to musculoskeletal symptoms.(Springer, 2022-07-01) Hertz, Daniel L.; Douglas, Julie A.; Miller, Robert M.; Kidwell, Kelley M.; Gersch, Christina L.; Desta, Zeruesenay; Storniolo, Anna Maria; Stearns, Vered; Skaar, Todd C.; Hayes, Daniel F.; Henry, N. Lynn; Rae, James M.OBJECTIVE: Aromatase inhibitors (AIs) are commonly used to treat hormone receptor positive (HR +) breast cancer. AI-induced musculoskeletal syndrome (AIMSS) is a common toxicity that causes AI treatment discontinuation. The objective of this genome-wide association study (GWAS) was to identify genetic variants associated with discontinuation of AI therapy due to AIMSS and attempt to replicate previously reported associations. METHODS: In the Exemestane and Letrozole Pharmacogenetics (ELPh) study, postmenopausal patients with HR + non-metastatic breast cancer were randomized to letrozole or exemestane. Genome-wide genotyping of germline DNA was conducted followed by imputation. Each imputed variant was tested for association with time-to-treatment discontinuation due to AIMSS using a Cox proportional hazards model assuming additive genetic effects and adjusting for age, baseline pain score, prior taxane treatment, and AI arm. Secondary analyses were conducted within each AI arm and analyses of candidate variants previously reported to be associated with AIMSS risk. RESULTS: Four hundred ELPh participants were included in the combined analysis. Two variants surpassed the genome-wide significance level in the primary analysis (p value < 5 × 10(-8)), an intronic variant (rs79048288) within CCDC148 (HR = 4.42, 95% CI: 2.67-7.33) and an intergenic variant (rs912571) upstream of PPP1R14C (HR = 0.30, 95% CI: 0.20-0.47). In the secondary analysis, rs74418677, which is known to be associated with expression of SUPT20H, was significantly associated with discontinuation of letrozole therapy due to AIMSS (HR = 5.91, 95% CI: 3.16-11.06). We were able to replicate associations for candidate variants previously reported to be associated with AIMSS in this cohort, but were not able to replicate associations for any other variants previously reported in other patient cohorts. CONCLUSIONS: Our GWAS findings identify several candidate variants that may be associated with AIMSS risk from AI generally or letrozole specifically. Validation of these associations in independent cohorts is needed before translating these findings into clinical practice to improve treatment outcomes in patients with HR + breast cancer.Item Genome-wide association study of letrozole plasma concentrations identifies non-exonic variants that may affect CYP2A6 metabolic activity.(Wolters Kluwer, 2021-07-01) Hertz, Daniel L.; Douglas, Julie A.; Kidwell, Kelley M.; Gersch, Christina L.; Desta, Zeruesenay; Storniolo, Ana-Maria; Stearns, Vered; Skaar, Todd C.; Hayes, Daniel F.; Henry, N. Lynn; Rae, James M.OBJECTIVES: Letrozole is a nonsteroidal aromatase inhibitor used to treat hormone-receptor-positive breast cancer. Variability in letrozole efficacy and toxicity may be partially attributable to variable systemic drug exposure, which may be influenced by germline variants in the enzymes responsible for letrozole metabolism, including cytochrome P450 2A6 (CYP2A6). The objective of this genome-wide association study (GWAS) was to identify polymorphisms associated with steady-state letrozole concentrations. METHODS: The Exemestane and Letrozole Pharmacogenetics (ELPh) Study randomized postmenopausal patients with hormone-receptor-positive nonmetastatic breast cancer to letrozole or exemestane treatment. Germline DNA was collected pretreatment and blood samples were collected after 1 or 3 months of treatment to measure steady-state letrozole (and exemestane) plasma concentrations via HPLC/MS. Genome-wide genotyping was conducted on the Infinium Global Screening Array (>650 000 variants) followed by imputation. The association of each germline variant with age- and BMI-adjusted letrozole concentrations was tested in self-reported white patients via linear regression assuming an additive genetic model. RESULTS: There were 228 patients who met the study-specific inclusion criteria and had both DNA and letrozole concentration data for this GWAS. The association for one genotyped polymorphism (rs7937) with letrozole concentration surpassed genome-wide significance (P = 5.26 × 10-10), explaining 13% of the variability in untransformed steady-state letrozole concentrations. Imputation around rs7937 and in silico analyses identified rs56113850, a variant in the CYP2A6 intron that may affect CYP2A6 expression and activity. rs7937 was associated with age- and BMI-adjusted letrozole levels even after adjusting for genotype-predicted CYP2A6 metabolic phenotype (P = 3.86 × 10-10). CONCLUSION: Our GWAS findings confirm that steady-state letrozole plasma concentrations are partially determined by germline polymorphisms that affect CYP2A6 activity, including variants near rs7937 such as the intronic rs56113850 variant. Further research is needed to confirm whether rs56113850 directly affects CYP2A6 activity and to integrate nonexonic variants into CYP2A6 phenotypic activity prediction systems.Item Genotyping concordance in DNA extracted from formalinfixed paraffin embedded (FFPE) breast tumor and whole blood for pharmacogenetic analyses(Wiley, 2015-11) Hertz, Daniel L.; Kidwell, Kelley M.; Thibert, Jacklyn N.; Gersch, Christina; Regan, Meredith M.; Skaar, Todd C.; Henry, N. Lynn; Hayes, Daniel F.; Van Poznak, Catherine H.; Rae, James M.; Medicine, School of MedicineBackground: Cancer pharmacogenetic studies use archival tumor samples as a DNA source when germline DNA is unavailable. Genotyping DNA from formalin-fixed paraffin embedded tumors (FFPE-T) may be inaccurate due to FFPE storage, genetic aberrations, and/or insufficient DNA extraction. Our objective was to assess the extent and source of genotyping inaccuracy from FFPE-T DNA and demonstrate analytical validity of FFPE-T genotyping of candidate single nucleotide polymorphisms (SNPs) for pharmacogenetic analyses. Methods: Cancer pharmacogenetics SNPs were genotyped by Sequenom MassARRAYs in DNA harvested from matched FFPE-T, FFPE lymph node (FFPE-LN), and whole blood leukocyte samples obtained from breast cancer patients. No- and discordant-call rates were calculated for each tissue type and SNP. Analytical validity was defined as any SNP with <5% discordance between FFPE-T and blood and <10% discordance plus no-calls. Results: Matched samples from 114 patients were genotyped for 247 SNPs. No-call rate in FFPE-T was greater than FFPE-LN and blood (4.3% vs. 3.0% vs. 0.5%, p < 0.001). Discordant-call rate between FFPE-T and blood was very low, but greater than that between FFPE-LN and blood (1.1% vs. 0.3%, p < 0.001). Samples with heterozygous genotypes were more likely to be no- or discordantly-called in either tissue (p < 0.001). Analytical validity of FFPE-T genotyping was demonstrated for 218 (88%) SNPs. Conclusions: No- and discordant-call rates were below concerning thresholds, confirming that most SNPs can be accurately genotyped from FFPE-T on our Sequenom platform. FFPE-T is a viable DNA source for prospective-retrospective pharmacogenetic analyses of clinical trial cohorts.Item Osteonecrosis of the Jaw Risk Factors in Bisphosphonate Treated Patients with Metastatic Cancer(Wiley, 2022) Van Poznak, Catherine; Reynolds, Evan L.; Estilo, Cherry L.; Hu, Mimi; Schneider, Bryan Paul; Hertz, Daniel L.; Gersch, Christina; Thibert, Jacklyn; Thomas, Dafydd; Banerjee, Mousumi; Rae, James M.; Hayes, Daniel F.; Medicine, School of MedicineBackground: A case-control study was performed to define clinical and genetic risk factors associated with osteonecrosis of the jaw in patients with metastatic cancer treated with bisphosphonates. Methods: Clinical data and tissues were collected from patients treated with bisphosphonates for metastatic bone disease who were diagnosed with osteonecrosis of the jaw (cases) and matched controls. Clinical data included patient, behavioral, disease, and treatment information. Genetic polymorphisms in CYP2C8 (rs1934951) and other candidate genes were genotyped. Odds ratios from conditional logistic regression models were examined to identify clinical and genetic characteristics associated with case or control status. Results: The study population consisted of 76 cases and 126 controls. In the final multivariable clinical model, patients with osteonecrosis of the jaw were less likely to have received pamidronate than zoledronic acid (odds ratio = 0.18, 95% Confidence interval: 0.03-0.97, p = .047) and more likely to have been exposed to bevacizumab (OR = 5.15, 95% CI: 1.67-15.95, p = .005). The exploratory genetic analyses suggested a protective effect for VEGFC rs2333496 and risk effects for VEGFC rs7664413 and PPARG rs1152003. Conclusions: We observed patients with ONJ were more likely to have been exposed to bevacizumab and zoledronic and identified potential genetic predictors that require validation prior to clinical translation.Item Polymorphisms in drug-metabolizing enzymes and steady-state exemestane concentration in postmenopausal patients with breast cancer(Springer Nature, 2017-12) Hertz, Daniel L.; Kidwell, Kelley M.; Seewald, Nicholas J.; Gersch, Christina L.; Desta, Zeruesenay; Flockhart, David A.; Storniolo, Ana-Maria; Stearns, Vered; Skaar, Todd C.; Hayes, Daniel F.; Henry, N. Lynn; Rae, James M.; Medicine, School of MedicineDiscovery of clinical and genetic predictors of exemestane pharmacokinetics was attempted in 246 post-menopausal patients with breast cancer enrolled on a prospective clinical study. A sample was collected two hours after exemestane dosing at a 1 or 3 month study visit to measure drug concentration. The primary hypothesis was that patients carrying the low-activity CYP3A4*22 (rs35599367) SNP would have greater exemestane concentration. Additional SNPs in genes relevant to exemestane metabolism (CYP1A1/2, CYP1B1, CYP3A4, CYP4A11, AKR1C3/4, AKR7A2) were screened in secondary analyses and adjusted for clinical covariates. CYP3A4*22 was associated with a 54% increase in exemestane concentration (p<0.01). Concentration was greater in patients who reported White race, had elevated aminotransferases, renal insufficiency, lower body mass index, and had not received chemotherapy (all p<0.05), and CYP3A4*22 maintained significance after adjustment for covariates (p<0.01). These genetic and clinical predictors of exemestane concentration may be useful for treatment individualization in patients with breast cancer.Item Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: ASCO Guideline Update(ASCO, 2020-10) Loprinzi, Charles L.; Lacchetti, Christina; Bleeker, Jonathan; Cavaletti, Guido; Chauhan, Cynthia; Hertz, Daniel L.; Kelley, Mark R.; Lavino, Antoinette; Lustberg, Maryam B.; Paice, Judith A.; Schneider, Bryan P.; Lavoie Smith, Ellen M.; Smith, Mary Lou; Smith, Thomas J.; Wagner Johnston, Nina; Hershman, Dawn L.; Pediatrics, School of MedicinePURPOSE To update the ASCO guideline on the recommended prevention and treatment approaches in the management of chemotherapy-induced peripheral neuropathy (CIPN) in adult cancer survivors. METHODS An Expert Panel conducted targeted systematic literature reviews to identify new studies. RESULTS The search strategy identified 257 new references, which led to a full-text review of 87 manuscripts. A total of 3 systematic reviews, 2 with meta-analyses, and 28 primary trials for prevention of CIPN in addition to 14 primary trials related to treatment of established CIPN, are included in this update. RECOMMENDATIONS The identified data reconfirmed that no agents are recommended for the prevention of CIPN. The use of acetyl-l-carnitine for the prevention of CIPN in patients with cancer should be discouraged. Furthermore, clinicians should assess the appropriateness of dose delaying, dose reduction, substitutions, or stopping chemotherapy in patients who develop intolerable neuropathy and/or functional impairment. Duloxetine is the only agent that has appropriate evidence to support its use for patients with established painful CIPN. Nonetheless, the amount of benefit from duloxetine is limited.