- Browse by Author
Browsing by Author "He, Yantao"
Now showing 1 - 8 of 8
Results Per Page
Sort Options
Item A facile hydroxyindole carboxylic acid based focused library approach for potent and selective inhibitors of Mycobacterium protein tyrosine phosphatase B(Wiley, 2013) Zeng, Li-Fan; Xu, Jie; He, Yantao; He, Rongjun; Wu, Li; Gunawan, Andrea M.; Zhang, Zhong-Yin; Biochemistry and Molecular Biology, School of MedicineFocused on Mtb: A facile hydroxyindole carboxylic acid based focused amide library was designed to target both the PTP active site and a unique nearby pocket for enhanced affinity and selectivity. HTS of the library led to the identification of a highly potent and selective inhibitor, 11 a, of mPTPB, an essential virulence factor for Mycobacterium tuberculosis. Compound 11 a shows high cellular activity and is capable of reversing the altered immune responses induced by mPTPB in macrophages.Item A potent and selective small molecule inhibitor for the lymphoid-specific tyrosine phosphatase (LYP), a target associated with autoimmune diseases(ACS, 2013) He, Yantao; Liu, Sijiu; Menon, Ambili; Stanford, Stephanie; Oppong, Emmanuel; Gunawan, Andrea M.; Wu, Li; Wu, Dennis J.; Barrios, Amy M.; Bottini, Nunzio; Cato, Andrew C. B.; Zhang, Zhong-Yin; Biochemistry and Molecular Biology, School of MedicineLymphoid-specific tyrosine phosphatase (LYP), a member of the protein tyrosine phosphatase (PTP) family of signaling enzymes, is associated with a broad spectrum of autoimmune diseases. Herein we describe our structure-based lead optimization efforts within a 6-hydroxy-benzofuran-5-carboxylic acid series culminating in the identification of compound 8b, a potent and selective inhibitor of LYP with a K(i) value of 110 nM and more than 9-fold selectivity over a large panel of PTPs. The structure of LYP in complex with 8b was obtained by X-ray crystallography, providing detailed information about the molecular recognition of small-molecule ligands binding LYP. Importantly, compound 8b possesses highly efficacious cellular activity in both T- and mast cells and is capable of blocking anaphylaxis in mice. Discovery of 8b establishes a starting point for the development of clinically useful LYP inhibitors for treating a wide range of autoimmune disorders.Item Discovery and Evaluation of Novel Inhibitors of Mycobacterium Protein Tyrosine Phosphatase B from the 6-Hydroxy-Benzofuran-5-Carboxylic Acid Scaffold(ACS, 2013) He, Yantao; Xu, Jie; Yu, Zhi-hong; Gunawan, Andrea M.; Wu, Li; Wang, Lina; Zhang, Zhong- Yin; Biochemistry and Molecular Biology, School of MedicineMycobacterium tuberculosis (Mtb) protein tyrosine phosphatase B (mPTPB) is a virulence factor secreted by the pathogen and mediates mycobacterial survival in macrophages by targeting host cell immune responses. Consequently, mPTPB represents an exciting new target to combat tuberculosis (TB) infection. We describe a medicinal chemistry oriented approach that transforms a benzofuran salicylic acid scaffold into a highly potent (IC(50) = 38 nM) and selective mPTPB inhibitor (>50 fold against a large panel of PTPs). Importantly, the inhibitor is capable of reversing the altered host immune responses induced by the bacterial phosphatase and restoring the macrophage's full capacity to secrete IL-6 and undergo apoptosis in response to interferon-γ stimulation, validating the concept that chemical inhibition of mPTPB may be therapeutically useful for novel TB treatment. The study further demonstrates that bicyclic salicylic acid pharmacophores can be used to deliver PTP inhibitors with high potency, selectivity, and cellular efficacy.Item Exploring the Existing Drug Space for Novel pTyr Mimetic and SHP2 Inhibitors(American Chemical Society, 2015-07-09) He, Rongjun; Yu, Zhi-Hong; Zhang, Ruo-Yu; Wu, Li; Gunawan, Andrea M.; Lane, Brandon S.; Shim, Joong S.; Zeng, Li-Fan; He, Yantao; Chen, Lan; Wells, Clark D.; Liu, Jun O.; Zhang, Zhong-Yin; Department of Biochemistry & Molecular Biology, IU School of MedicineProtein tyrosine phosphatases (PTPs) are potential therapeutic targets for many diseases. Unfortunately, despite considerable drug discovery efforts devoted to PTPs, obtaining selective and cell permeable PTP inhibitors remains highly challenging. We describe a strategy to explore the existing drug space for previously unknown PTP inhibitory activities. This led to the discovery of cefsulodin as an inhibitor of SHP2, an oncogenic phosphatase in the PTP family. Crystal structure analysis of SHP2 interaction with cefsulodin identified sulfophenyl acetic amide (SPAA) as a novel phosphotyrosine (pTyr) mimetic. A structure-guided and SPAA fragment-based focused library approach produced several potent and selective SHP2 inhibitors. Notably, these inhibitors blocked SHP2-mediated signaling events and proliferation in several cancer cell lines. Thus, SPAA may serve as a new platform for developing chemical probes for other PTPs.Item Negative regulation of TLR signaling in myeloid cells--implications for autoimmune diseases(Wiley, 2016-01) Hamerman, Jessica A.; Pottle, Jessica; Ni, Minjian; He, Yantao; Zhang, Zhong-Yin; Buckner, Jane H.; Department of Biochemistry & Molecular Biology, IU School of MedicineToll-like receptors (TLR) are transmembrane pattern recognition receptors that recognize microbial ligands and signal for production of inflammatory cytokines and type I interferon in macrophages and dendritic cells (DC). Whereas TLR-induced inflammatory mediators are required for pathogen clearance, many are toxic to the host and can cause pathological inflammation when over-produced. This is demonstrated by the role of TLR-induced cytokines in autoimmune diseases, such as rheumatoid arthritis, inflammatory bowel disease, and systemic lupus erythematosus. Because of the potent effects of TLR-induced cytokines, we have diverse mechanisms to dampen TLR signaling. Here, we highlight three pathways that participate in inhibition of TLR responses in macrophages and DC, and their implications in autoimmunity; A20, encoded by the TNFAIP3 gene, Lyp encoded by the PTPN22 gene, and the BCAP/PI3K pathway. We present new findings that Lyp promotes TLR responses in primary human monocytes and that the autoimmunity risk Lyp620W variant is more effective at promoting TLR-induced interleukin-6 than the non-risk Lyp620R protein. This suggests that Lyp serves to downregulate a TLR inhibitory pathway in monocytes, and we propose that Lyp inhibits the TREM2/DAP12 inhibitory pathway. Overall, these pathways demonstrate distinct mechanisms of negative regulation of TLR responses, and all impact autoimmune disease pathogenesis and treatment.Item Organocatalytic Multicomponent Reaction for the Acquisition of a Selective Inhibitor of mPTPB, a Virulence Factor of Tuberculosis(Royal Society of Chemistry, 2013) He, Rongjun; Zeng, Li-Fan; He, Yantao; Wu, Li; Gunawan, Andrea Michelle; Zhang, Zhong-Yin; Biochemistry and Molecular Biology, School of MedicineMycobacterium protein tyrosine phosphatase B (mPTPB) is essential for the survival and persistence of Mycobacterium in the host. Thus small molecule inhibitors of mPTPB are potential anti-TB agents. We developed an efficient organocatalytic multicomponent reaction (MCR) between pyrrole, formaldehyde and aniline, affording a potent and selective mPTPB inhibitor with an IC(50) value of 1.5 μM and >50-fold specificity. Our studies provide a successful example of using organocatalysis as a discovery tool for the acquisition of PTP inhibitors.Item Small molecule tools for functional interrogation of protein tyrosine phosphatases(Wiley, 2013) He, Rongjun; Zeng, Li-Fan; He, Yantao; Zhang, Sheng; Zhang, Zhong-Yin; Biochemistry and Molecular Biology, School of MedicineThe importance of protein tyrosine phosphatases (PTPs) in the regulation of cellular signalling is well established. Malfunction of PTP activity is also known to be associated with cancer, metabolic syndromes and autoimmune disorders, as well as neurodegenerative and infectious diseases. However, a detailed understanding of the roles played by the PTPs in normal physiology and in pathogenic conditions has been hampered by the absence of PTP-specific small molecule agents. In addition, the therapeutic benefits of modulating this target class are underexplored as a result of a lack of suitable chemical probes. Potent and specific PTP inhibitors could significantly facilitate functional analysis of the PTPs in complex cellular signal transduction pathways and may constitute valuable therapeutics in the treatment of several human diseases. We highlight the current challenges to and opportunities for developing PTP-specific small molecule agents. We also review available selective small molecule inhibitors developed for a number of PTPs, including PTP1B, TC-PTP, SHP2, lymphoid-specific tyrosine phosphatase, haematopoietic protein tyrosine phosphatase, CD45, PTPβ, PTPγ, PTPRO, Vaccinia H1-related phosphatase, mitogen-activated protein kinase phosphatase-1, mitogen-activated protein kinase phosphatase-3, Cdc25, YopH, mPTPA and mPTPB.Item The Protein Tyrosine Phosphatase, Shp2, Positively Contributes to FLT3-ITD-Induced Hematopoietic Progenitor Hyperproliferation and Malignant Disease In Vivo(Springer Nature, 2013) Nabinger, Sarah C.; Li, XingJun; Ramdas, Baskar; He, Yantao; Zhang, Xian; Zeng, Lifan; Richine, Briana; Bowling, Joshua D.; Fukuda, Seiji; Goenka, Shreevrat; Liu, Ziyue; Feng, Gen-Sheng; Yu, Menggang; Sandusky, George E.; Boswell, H. Scott; Zhang, Zhong-Yin; Kapur, Reuben; Chan, Rebecca J.; Pediatrics, School of MedicineInternal tandem duplications (ITDs) in the fms-like tyrosine kinase receptor (FLT3-ITDs) confer a poor prognosis in acute myeloid leukemia (AML). We hypothesized that increased recruitment of the protein tyrosine phosphatase, Shp2, to FLT3-ITDs contributes to FLT3 ligand (FL)-independent hyperproliferation and STAT5 activation. Co-immunoprecipitation demonstrated constitutive association of Shp2 with the FLT3-ITD, N51-FLT3, as well as with STAT5. Knockdown of Shp2 in Baf3/N51-FLT3 cells significantly reduced proliferation while having little effect on WT-FLT3-expressing cells. Consistently, mutation of N51-FLT3 tyrosine 599 to phenylalanine or genetic disruption of Shp2 in N51-FLT3-expressing bone marrow low-density mononuclear cells reduced proliferation and STAT5 activation. In transplants, genetic disruption of Shp2 in vivo yielded increased latency to and reduced severity of FLT3-ITD-induced malignancy. Mechanistically, Shp2 co-localizes with nuclear phospho-STAT5, is present at functional interferon-γ activation sites (GAS) within the BCL2L1 promoter, and positively activates the human BCL2L1 promoter, suggesting that Shp2 works with STAT5 to promote pro-leukemogenic gene expression. Further, using a small molecule Shp2 inhibitor, the proliferation of N51-FLT3-expressing bone marrow progenitors and primary AML samples was reduced in a dose-dependent manner. These findings demonstrate that Shp2 positively contributes to FLT3-ITD-induced leukemia and suggest that Shp2 inhibition may provide a novel therapeutic approach to AML.