- Browse by Author
Browsing by Author "Harper, Jonathan D."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Comparison of Tissue Injury from Focused Ultrasonic Propulsion of Kidney Stones Versus Extracorporeal Shock Wave Lithotripsy(Elsevier, 2014-01) Connors, Bret A.; Evan, Andrew P.; Blomgren, Philip M.; Hsi, Ryan S.; Harper, Jonathan D.; Sorensen, Mathew D.; Wang, Yak-Nam; Simon, Julianna C.; Paun, Marla; Starr, Frank; Cunitz, Bryan W.; Bailey, Michael R.; Lingeman, James E.; Department of Anatomy & Cell Biology, IU School of MedicinePurpose Focused ultrasonic propulsion is a new non-invasive technique designed to move kidney stones and stone fragments out of the urinary collecting system. However, the extent of tissue injury associated with this technique is not known. As such, we quantitated the amount of tissue injury produced by focused ultrasonic propulsion under simulated clinical treatment conditions, and under conditions of higher power or continuous duty cycles, and compared those results to SWL injury. Materials and Methods A human calcium oxalate monohydrate stone and/or nickel beads were implanted (with ureteroscopy) into 3 kidneys of live pigs (45–55 kg) and repositioned using focused ultrasonic propulsion. Additional pig kidneys were exposed to SWL level pulse intensities or continuous ultrasound exposure of 10 minutes duration (ultrasound probe either transcutaneous or on the kidney). These kidneys were compared to 6 kidneys treated with an unmodified Dornier HM3 Lithotripter (2400 shocks, 120 SWs/min and 24 kV). Histological analysis was performed to assess the volume of hemorrhagic tissue injury created by each technique (% functional renal volume, FRV). Results SWL produced a lesion of 1.56±0.45% FRV. Ultrasonic propulsion produced no detectable lesion with the simulated clinical treatment. A lesion of 0.46±0.37% FRV or 1.15±0.49% FRV could be produced if excessive treatment parameters were used while the ultrasound probe was placed on the kidney. Conclusions Focused ultrasonic propulsion produced no detectable morphological injury to the renal parenchyma when using clinical treatment parameters and produced injury comparable in size to SWL when using excessive treatment parameters.Item First In-Human Burst Wave Lithotripsy for Kidney Stone Comminution: Initial Two Case Studies(Mary Ann Liebert, Inc., 2021) Harper, Jonathan D.; Metzler, Ian; Hall, Michael Kennedy; Chen, Tony T.; Maxwell, Adam D.; Cunitz, Bryan W.; Dunmire, Barbrina; Thiel, Jeff; Williams, James C., Jr.; Bailey, Michael R.; Sorensen, Mathew D.; Anatomy, Cell Biology and Physiology, School of MedicinePurpose: To test the effectiveness (Participant A) and tolerability (Participant B) of urinary stone comminution in the first-in-human trial of a new technology, burst-wave lithotripsy (BWL). Materials and Methods: An investigational BWL and ultrasonic propulsion system was used to target a 7-mm kidney stone in the operating room before ureteroscopy (Participant A). The same system was used to target a 7.5 mm ureterovesical junction stone in clinic without anesthesia (Participant B). Results: For Participant A, a ureteroscope inserted after 9 minutes of BWL observed fragmentation of the stone to <2 mm fragments. Participant B tolerated the procedure without pain from BWL, required no anesthesia, and passed the stone on day 15. Conclusions: The first-in-human tests of BWL pulses were successful in that a renal stone was comminuted in <10 minutes, and BWL was also tolerated by an awake subject for a distal ureteral stone.Item First Series Using Ultrasonic Propulsion and Burst Wave Lithotripsy to Treat Ureteral Stones(American Urological Association Education and Research, Inc., 2022) Hall, M. Kennedy; Thiel, Jeff; Dunmire, Barbrina; Samson, Patrick C.; Kessler, Ross; Sunaryo, Peter; Sweet, Robert M.; Metzler, Ian S.; Chang, Helena C.; Gunn, Martin; Dighe, Manjiri; Anderson, Layla; Popchoi, Christina; Managuli, Ravi; Cunitz, Bryan W.; Burke, Barbara H.; Ding, Lisa; Gutierrez, Brianna; Liu, Ziyue; Sorensen, Mathew D.; Wessells, Hunter; Bailey, Michael R.; Harper, Jonathan D.; Biostatistics and Health Data Science, School of MedicinePurpose: Our goal was to test transcutaneous focused ultrasound in the form of ultrasonic propulsion and burst wave lithotripsy to reposition ureteral stones and facilitate passage in awake subjects. Materials and methods: Adult subjects with a diagnosed proximal or distal ureteral stone were prospectively recruited. Ultrasonic propulsion alone or with burst wave lithotripsy was administered by a handheld transducer to awake, unanesthetized subjects. Efficacy outcomes included stone motion, stone passage, and pain relief. Safety outcome was the reporting of associated anticipated or adverse events. Results: Twenty-nine subjects received either ultrasonic propulsion alone (n = 16) or with burst wave lithotripsy bursts (n = 13), and stone motion was observed in 19 (66%). The stone passed in 18 (86%) of the 21 distal ureteral stone cases with at least 2 weeks follow-up in an average of 3.9±4.9 days post-procedure. Fragmentation was observed in 7 of the burst wave lithotripsy cases. All subjects tolerated the procedure with average pain scores (0-10) dropping from 2.1±2.3 to 1.6±2.0 (P = .03). Anticipated events were limited to hematuria on initial urination post-procedure and mild pain. In total, 7 subjects had associated discomfort with only 2.2% (18 of 820) propulsion bursts. Conclusions: This study supports the efficacy and safety of using ultrasonic propulsion and burst wave lithotripsy in awake subjects to reposition and break ureteral stones to relieve pain and facilitate passage.Item First-in-human clinical trial of ultrasonic propulsion of kidney stones(First in Human Clinical Trial of Ultrasonic Propulsion of Kidney Stones, 2016-04) Harper, Jonathan D.; Cunitz, Bryan W.; Dunmire, Barbrina; Lee, Franklin C.; Sorensen, Mathew D.; Hsi, Ryan S.; Thiel, Jeff; Wessells, Hunter; Lingeman, James E.; Bailey, Michael R.; Urology, School of MedicinePURPOSE: Ultrasonic propulsion is a new technology using focused ultrasound energy applied transcutaneously to reposition kidney stones. We report what are to our knowledge the findings from the first human investigational trial of ultrasonic propulsion toward the applications of expelling small stones and dislodging large obstructing stones. MATERIALS AND METHODS: Subjects underwent ultrasonic propulsion while awake without sedation in clinic, or during ureteroscopy while anesthetized. Ultrasound and a pain questionnaire were completed before, during and after propulsion. The primary outcome was to reposition stones in the collecting system. Secondary outcomes included safety, controllable movement of stones and movement of stones less than 5 mm and 5 mm or greater. Adverse events were assessed weekly for 3 weeks. RESULTS: Kidney stones were repositioned in 14 of 15 subjects. Of the 43 targets 28 (65%) showed some level of movement while 13 (30%) were displaced greater than 3 mm to a new location. Discomfort during the procedure was rare, mild, brief and self-limited. Stones were moved in a controlled direction with more than 30 fragments passed by 4 of the 6 subjects who had previously undergone a lithotripsy procedure. The largest stone moved was 10 mm. One patient experienced pain relief during treatment of a large stone at the ureteropelvic junction. In 4 subjects a seemingly large stone was determined to be a cluster of small passable stones after they were moved. CONCLUSIONS: Ultrasonic propulsion was able to successfully reposition stones and facilitate the passage of fragments in humans. No adverse events were associated with the investigational procedure.Item Focused Ultrasonic Propulsion of Kidney Stones(Mary Ann Liebert, Inc., 2013-12-09) Sorensen, Mathew D.; Bailey, Michael R.; Hsi, Ryan S.; Cunitz, Bryan W.; Simon, Julianna; Wang, Yak-Nam; Dunmire, Barbrina L.; Paun, Marla; Starr, Frank; Lu, Wei; Evan, Andrew P.; Harper, Jonathan D.; Anatomy and Cell Biology, School of MedicineIntroduction: Our research group is studying a noninvasive transcutaneous ultrasound device to expel small kidney stones or residual post-treatment stone fragments from the kidney.1-3 The purpose of this study was to evaluate the efficacy and safety of ultrasonic propulsion in a live porcine model. Materials and Methods: In domestic female swine (50-60 kg), human stones (calcium oxalate monohydrate) and metalized glass beads (2-8 mm) were ureteroscopically implanted.4 Target stones and beads were placed in the lower half of the kidney and a reference bead was placed in the upper pole. Ultrasonic propulsion was achieved through a single ultrasound system that allowed targeting, stone propulsion, and ultrasound imaging using a Philips HDI C5-2 commercial imaging transducer and a Verasonics diagnostic ultrasound platform. Stone propulsion was achieved through the delivery of 1-second bursts of focused, ultrasound pulses, which consist of 250 finely focused pulses 0.1 milliseconds in duration. Stone propulsion was then observed using fluoroscopy, ultrasound, and visually with the ureteroscope. The kidneys were then perfusion-fixed with glutaraldehyde, embedded in paraffin, sectioned, and stained. Samples were histologically scored for injury by a blinded independent expert. Using the same pulsing scheme, while varying acoustic intensities, an injury threshold and patterns of injury were determined in additional pigs.5,6 Results: Stones were successfully implanted in 14 kidneys. Overall, 17 of 26 (65)% stones/beads were moved the entire distance to the renal pelvis, ureteropelvic junction (UPJ), or proximal ureter. The average procedure time for successfully repositioned stones was 14.2±7.9 minutes with 23±16 push bursts. No gross or histologic damage was identified from the ultrasound propulsion procedure. Under this pulsing scheme, a maximum exposure of 2400 W/cm2 was delivered during each treatment. An intensity threshold of 16,620 W/cm2 was determined at which, above this level, tissue injury consistent with emulsification, necrosis, and hemorrhage appeared to be dose dependent. Conclusions: Ultrasonic propulsion is effective with most stones being relocated to the renal pelvis, UPJ, or proximal ureter in a timely fashion. The procedure appears safe with no evidence of injury. The acoustic intensities delivered at maximum treatment settings are well below the threshold at which injury is observed. The angle and alignment of directional force are the most critical factors determining the efficacy of stone propulsion. We are now pursuing FDA approval for a human feasibility study. No competing financial interests exist. Runtime of video: 5 mins 44 secs.Item Fragmentation of Stones by Burst Wave Lithotripsy in the First 19 Humans(Wolters Kluwer, 2022) Harper, Jonathan D.; Lingeman, James E.; Sweet, Robert M.; Metzler, Ian S.; Sunaryo, Peter L.; Williams, James C., Jr.; Maxwell, Adam D.; Thiel, Jeff; Cunitz, Bryan W.; Dunmire, Barbrina; Bailey, Michael R.; Sorensen, Mathew D.; Urology, School of MedicinePurpose: We report stone comminution in the first 19 human subjects by burst wave lithotripsy (BWL), which is the transcutaneous application of focused, cyclic ultrasound pulses. Materials and methods: This was a prospective multi-institutional feasibility study recruiting subjects undergoing clinical ureteroscopy (URS) for at least 1 stone ≤12 mm as measured on computerized tomography. During the planned URS, either before or after ureteroscope insertion, BWL was administered with a handheld transducer, and any stone fragmentation and tissue injury were observed. Up to 3 stones per subject were targeted, each for a maximum of 10 minutes. The primary effectiveness outcome was the volume percent comminution of the stone into fragments ≤2 mm. The primary safety outcome was the independent, blinded visual scoring of tissue injury from the URS video. Results: Overall, median stone comminution was 90% (IQR 20, 100) of stone volume with 21 of 23 (91%) stones fragmented. Complete fragmentation (all fragments ≤2 mm) within 10 minutes of BWL occurred in 9 of 23 stones (39%). Of the 6 least comminuted stones, likely causative factors for decreased effectiveness included stones that were larger than the BWL beamwidth, smaller than the BWL wavelength or the introduction of air bubbles from the ureteroscope. Mild reddening of the papilla and hematuria emanating from the papilla were observed ureteroscopically. Conclusions: The first study of BWL in human subjects resulted in a median of 90% comminution of the total stone volume into fragments ≤2 mm within 10 minutes of BWL exposure with only mild tissue injury.Item In Vitro Evaluation of Urinary Stone Comminution with a Clinical Burst Wave Lithotripsy System(Mary Ann Liebert, Inc., 2020-11) Ramesh, Shivani; Chen, Tony T.; Maxwell, Adam D.; Cunitz, Bryan W.; Dunmire, Barbrina; Thiel, Jeff; Williams, James C., Jr.; Gardner, Anthony; Liu, Ziyue; Metzler, Ian; Harper, Jonathan D.; Sorensen, Mathew D.; Bailey, Michael R.; Anatomy, Cell Biology and Physiology, School of MedicineObjective: Our goals were to validate stone comminution with an investigational burst wave lithotripsy (BWL) system in patient-relevant conditions and to evaluate the use of ultrasonic propulsion to move a stone or fragments to aid in observing the treatment endpoint. Materials and Methods: The Propulse-1 system, used in clinical trials of ultrasonic propulsion and upgraded for BWL trials, was used to fragment 46 human stones (5-7 mm) in either a 15-mm or 4-mm diameter calix phantom in water at either 50% or 75% dissolved oxygen level. Stones were paired by size and composition, and exposed to 20-cycle, 390-kHz bursts at 6-MPa peak negative pressure (PNP) and 13-Hz pulse repetition frequency (PRF) or 7-MPa PNP and 6.5-Hz PRF. Stones were exposed in 5-minute increments and sieved, with fragments >2 mm weighed and returned for additional treatment. Effectiveness for pairs of conditions was compared statistically within a framework of survival data analysis for interval censored data. Three reviewers blinded to the experimental conditions scored ultrasound imaging videos for degree of fragmentation based on stone response to ultrasonic propulsion. Results: Overall, 89% (41/46) and 70% (32/46) of human stones were fully comminuted within 30 and 10 minutes, respectively. Fragments remained after 30 minutes in 4% (1/28) of calcium oxalate monohydrate stones and 40% (4/10) of brushite stones. There were no statistically significant differences in comminution time between the two output settings (p = 0.44), the two dissolved oxygen levels (p = 0.65), or the two calyx diameters (p = 0.58). Inter-rater correlation on endpoint detection was substantial (Fleiss' kappa = 0.638, p < 0.0001), with individual reviewer sensitivities of 95%, 86%, and 100%. Conclusions: Eighty-nine percent of human stones were comminuted with a clinical BWL system within 30 minutes under conditions intended to reflect conditions in vivo. The results demonstrate the advantage of using ultrasonic propulsion to disperse fragments when making a visual determination of breakage endpoint from the real-time ultrasound image.Item Quantification of Renal Stone Contrast with Ultrasound in Human Subjects(Liebert, 2017) Cunitz, Bryan W.; Harper, Jonathan D.; Sorensen, Mathew D.; Haider, Yasser A.; Thiel, Jeff; May, Philip C.; Liu, Ziyue; Bailey, Michael R.; Dunmire, Barbrina; Bruce, Matthew; Department of Biostatistics, School of Public HealthPurpose: Greater visual contrast between calculi and tissue would improve ultrasound (US) imaging of urolithiasis and potentially expand clinical use. The color Doppler twinkling artifact has been suggested to provide enhanced contrast of stones compared with brightness mode (B-mode) imaging, but results are variable. This work provides the first quantitative measure of stone contrast in humans for B-mode and color Doppler mode, forming the basis to improve US for the detection of stones. Materials and Methods: Using a research ultrasound system, B-mode imaging was tuned for detecting stones by applying a single transmit angle and reduced signal compression. Stone twinkling with color Doppler was tuned by using low-frequency transmit pulses, longer pulse durations, and a high-pulse repetition frequency. Data were captured from 32 subjects, with 297 B-mode and Doppler images analyzed from 21 subjects exhibiting twinkling signals. The signal to clutter ratio (i.e., stone to background tissue) (SCR) was used to compare the contrast of a stone on B-mode with color Doppler, and the contrast between stone twinkling and blood-flow signals within the kidney. Results: The stone was the brightest object in only 54% of B-mode images and 100% of Doppler images containing stone twinkling. On average, stones were isoechoic with the tissue clutter on B-mode (SCR = 0 dB). Stone twinkling averaged 37 times greater contrast than B-mode (16 dB, p < 0.0001) and 3.5 times greater contrast than blood-flow signals (5.5 dB, p = 0.088). Conclusions: This study provides the first quantitative measure of US stone to tissue contrast in humans. Stone twinkling contrast is significantly greater than the contrast of a stone on B-mode. There was also a trend of stone twinkling signals having greater contrast than blood-flow signals in the kidney. Dedicated optimization of B-mode and color Doppler stone imaging could improve US detection of stones.Item Removal of Small, Asymptomatic Kidney Stones and Incidence of Relapse(Massachusetts Medical Society, 2022) Sorensen, Mathew D.; Harper, Jonathan D.; Borofsky, Michael S.; Hameed, Tariq A.; Smoot, Kimberly J.; Burke, Barbara H.; Levchak, Branda J.; Williams, James C., Jr.; Bailey, Michael R.; Liu, Ziyue; Lingeman, James E.; Radiology and Imaging Sciences, School of MedicineBackground: The benefits of removing small (≤6 mm), asymptomatic kidney stones endoscopically is unknown. Current guidelines leave such decisions to the urologist and the patient. A prospective study involving older, nonendoscopic technology and some retrospective studies favor observation. However, published data indicate that about half of small renal stones left in place at the time that larger stones were removed caused other symptomatic events within 5 years after surgery. Methods: We conducted a multicenter, randomized, controlled trial in which, during the endoscopic removal of ureteral or contralateral kidney stones, remaining small, asymptomatic stones were removed in 38 patients (treatment group) and were not removed in 35 patients (control group). The primary outcome was relapse as measured by future emergency department visits, surgeries, or growth of secondary stones. Results: After a mean follow-up of 4.2 years, the treatment group had a longer time to relapse than the control group (P<0.001 by log-rank test). The restricted mean (±SE) time to relapse was 75% longer in the treatment group than in the control group (1631.6±72.8 days vs. 934.2±121.8 days). The risk of relapse was 82% lower in the treatment group than the control group (hazard ratio, 0.18; 95% confidence interval, 0.07 to 0.44), with 16% of patients in the treatment group having a relapse as compared with 63% of those in the control group. Treatment added a median of 25.6 minutes (interquartile range, 18.5 to 35.2) to the surgery time. Five patients in the treatment group and four in the control group had emergency department visits within 2 weeks after surgery. Eight patients in the treatment group and 10 in the control group reported passing kidney stones. Conclusions: The removal of small, asymptomatic kidney stones during surgery to remove ureteral or contralateral kidney stones resulted in a lower incidence of relapse than nonremoval and in a similar number of emergency department visits related to the surgery.Item Update on clinical trials of kidney stone repositioning and preclinical results of stone breaking with one system(Acoustical Society of America, 2018-12-21) Bailey, Michael R.; Wang, Yak-Nam; Kreider, Wayne; Dai, Jessica C.; Cunitz, Bryan W.; Harper, Jonathan D.; Chang, Helena; Sorensen, Mathew D.; Liu, Ziyue; Levy, Oren; Dunmire, Barbrina; Maxwell, Adam D.; Biostatistics, School of Public HealthOur goal is an office-based, handheld ultrasound system to target, detach, break, and/or expel stones and stone fragments from the urinary collecting system to facilitate natural clearance. Repositioning of stones in humans (maximum 2.5 MPa, and 3-second bursts) and breaking of stones in a porcine model (maximum 50 cycles, 20 Hz repetition, 30 minutes, and 7 MPa peak negative pressure) have been demonstrated using the same 350-kHz probe. Repositioning in humans was conducted during surgery with a ureteroscope in the kidney to film stone movement. Independent video review confirmed stone movements (≥ 3 mm) in 15 of 16 kidneys (94%). No serious or unanticipated adverse events were reported. Experiments of burst wave lithotripsy (BWL) effectiveness on breaking human stones implanted in the porcine bladder and kidney demonstrated fragmentation of 8 of 8 stones on post mortem dissection. A 1-week survival study with the BWL exposures and 10 specific-pathogen-free pigs, showed all findings were within normal limits on clinical pathology, hematology, and urinalysis. These results demonstrate that repositioning of stones with ultrasonic propulsion and breaking of stones with BWL are safe and effective.