- Browse by Author
Browsing by Author "Haneline, Laura S."
Now showing 1 - 10 of 31
Results Per Page
Sort Options
Item Alkynyl nicotinamides show antileukemic activity in drug-resistant acute myeloid leukemia(The American Society for Clinical Investigation, 2024-06-17) Ramdas, Baskar; Dayal, Neetu; Pandey, Ruchi; Larocque, Elizabeth; Kanumuri, Rahul; Pasupuleti, Santhosh Kumar; Liu, Sheng; Kanellopoulou, Chrysi; Chu, Elizabeth Fei Yin; Mohallem, Rodrigo; Virani, Saniya; Chopra, Gaurav; Aryal, Uma K.; Lapidus, Rena; Wan, Jun; Emadi, Ashkan; Haneline, Laura S.; Holtsberg, Frederick W.; Aman, M. Javad; Sintim, Herman O.; Kapur, Reuben; Pediatrics, School of MedicineActivating mutations of FLT3 contribute to deregulated hematopoietic stem and progenitor cell (HSC/Ps) growth and survival in patients with acute myeloid leukemia (AML), leading to poor overall survival. AML patients treated with investigational drugs targeting mutant FLT3, including Quizartinib and Crenolanib, develop resistance to these drugs. Development of resistance is largely due to acquisition of cooccurring mutations and activation of additional survival pathways, as well as emergence of additional FLT3 mutations. Despite the high prevalence of FLT3 mutations and their clinical significance in AML, there are few targeted therapeutic options available. We have identified 2 novel nicotinamide-based FLT3 inhibitors (HSN608 and HSN748) that target FLT3 mutations at subnanomolar concentrations and are potently effective against drug-resistant secondary mutations of FLT3. These compounds show antileukemic activity against FLT3ITD in drug-resistant AML, relapsed/refractory AML, and in AML bearing a combination of epigenetic mutations of TET2 along with FLT3ITD. We demonstrate that HSN748 outperformed the FDA-approved FLT3 inhibitor Gilteritinib in terms of inhibitory activity against FLT3ITD in vivo.Item Are Newborn Outcomes Different for Term Babies Who Were Exposed to Antenatal Corticosteroids?(Elsevier, 2021) McKinzie, Alexandra H.; Yang, Ziyi; Teal, Evgenia; Daggy, Joanne K.; Tepper, Robert S.; Quinney, Sarah K.; Rhoads, Eli; Haneline, Laura S.; Haas, David M.; Obstetrics and Gynecology, School of MedicineBackground: Antenatal corticosteroids improve newborn outcomes for preterm infants. However, predicting which women presenting for threatened preterm labor will have preterm infants is inaccurate, and many women receive antenatal corticosteroids but then go on to deliver at term. Objective: This study aimed to compare the short-term outcomes of infants born at term to women who received betamethasone for threatened preterm labor with infants who were not exposed to betamethasone in utero. Study design: We performed a retrospective cohort study of infants born at or after 37 weeks' gestational age to mothers diagnosed as having threatened preterm labor during pregnancy. The primary neonatal outcomes of interest included transient tachypnea of the newborn, neonatal intensive care unit admission, and small for gestational age and were evaluated for their association with betamethasone exposure while adjusting for covariates using multiple logistic regression. Results: Of 5330 women, 1459 women (27.5%) received betamethasone at a mean gestational age of 32.2±3.3 weeks. The mean age of women was 27±5.9 years and the mean gestational age at delivery was 38.9±1.1 weeks. Women receiving betamethasone had higher rates of maternal comorbidities (P<.001 for diabetes mellitus, asthma, and hypertensive disorder) and were more likely to self-identify as White (P=.022). Betamethasone-exposed neonates had increased rates of transient tachypnea of the newborn, neonatal intensive care unit admission, small for gestational age, hyperbilirubinemia, and hypoglycemia (all, P<.05). Controlling for maternal characteristics and gestational age at delivery, betamethasone exposure was not associated with a diagnosis of transient tachypnea of the newborn (adjusted odds ratio, 1.10; 95% confidence interval, 0.80-1.51), although it was associated with more neonatal intensive care unit admissions (adjusted odds ratio, 1.49; 95% confidence interval, 1.19-1.86) and higher odds of the baby being small for gestational age (adjusted odds ratio, 1.78; 95% confidence interval, 1.48-2.14). Conclusion: Compared with women evaluated for preterm labor who did not receive betamethasone, women receiving betamethasone had infants with higher rates of neonatal intensive care unit admission and small for gestational age. Although the benefits of betamethasone to infants born preterm are clear, there may be negative impacts for infants delivered at term.Item Are Newborn Outcomes Different for Term Babies Who Were Exposed to Antenatal Corticosteroids?(American Journal of Obstetrics and Gynecology, 2021-05-03) McKinzie, Alexandra; Yang, Ziyi; Teal, Evgenia; Daggy, Joanne K.; Tepper, Robert S.; Quinney, Sarah K.; Rhoads, Eli; Haneline, Laura S.; Haas, David M.; Obstetrics and Gynecology, School of MedicineBackground Antenatal corticosteroids improve newborn outcomes for preterm infants. However, predicting which women presenting for threatened preterm labor will have preterm infants is inaccurate and many women receive antenatal corticosteroids but then go on to deliver at term. Objective The purpose of this study was to compare the short-term outcomes of infants born at term to women who received betamethasone (BMZ) for threatened preterm labor to infants who were not exposed to BMZ in utero. Study Design We performed a retrospective cohort study of infants born at or after 37 weeks’ gestational age (GA) to mothers diagnosed with threatened preterm labor during pregnancy. The primary neonatal outcomes of interest included transient tachypnea of the newborn (TTN), neonatal intensive care unit (NICU) admission, and small for gestational age (SGA), and were evaluated for their association with BMZ exposure while adjusting for covariates using multiple logistic regression. Results Of 5330 women, 1459 (27.5%) women received BMZ at a mean GA of 32.2±3.3 weeks. The mean age of women was 27±5.9 years-old and the mean GA at delivery was 38.9±1.1 weeks. Women receiving BMZ had higher rates of maternal comorbidities (P<0.001 for diabetes, asthma, and hypertensive disorder) and were more likely to self-identify as white (P=0.022). BMZ-exposed neonates had increased rates of TTN, NICU admission, SGA, hyperbilirubinemia, and hypoglycemia (all P-values <0.05). Controlling for maternal characteristics and GA at delivery, BMZ exposure was not significantly associated with diagnosis of TTN (aOR 1.10, 95% CI 0.80-1.51), though it was associated with more NICU admissions (aOR 1.49, 95% CI 1.19-1.86) and higher odds of the baby being small for gestational age (SGA, aOR 1.78, 95%CI 1.48 to 2.14). Conclusions Compared to women evaluated for preterm labor that did not receive BMZ, women receiving BMZ had infants with higher rates of NICU admission and SGA. While the benefits of BMZ to infants born preterm are clear, there may be negative impacts for infants delivered at term.Item Biomarkers for Diagnosis and Prognosis of Sinusoidal Obstruction Syndrome after Hematopoietic Cell Transplantation.(Elsevier, 2015-10) Akil, Ayman; Zhang, Qing; Mumaw, Christen L.; Raiker, Nisha; Yu, Jeffrey; de Mendizabal, Nieves Velez; Haneline, Laura S.; Robertson, Kent A.; Skiles, Jodi; Diaz-Ricart, Maribel; Carreras, Enric; Renbarger, Jamie; Hanash, Samir; Bies, Robert R.; Paczesny, Sophie; Department of Pediatrics, IU School of MedicineReliable, non-invasive methods for diagnosing and prognosing sinusoidal obstruction syndrome (SOS) early after hematopoietic cell transplantation (HCT) are needed. We used a quantitative mass spectrometry-based proteomics approach to identify candidate biomarkers of SOS by comparing plasma pooled from 20 patients with and 20 patients without SOS. Of 494 proteins quantified, we selected six proteins [L-Ficolin, vascular-cell-adhesion-molecule-1 (VCAM1), tissue-inhibitor of metalloproteinase-1, von Willebrand factor, intercellular-adhesion-molecule-1, and CD97] based on a differential heavy/light isotope ratio of at least 2 fold, information from the literature, and immunoassay availability. Next, we evaluated the diagnostic potential of these six proteins and five selected from the literature [suppression of tumorigenicity-2 (ST2), angiopoietin-2 (ANG2), hyaluronic acid (HA), thrombomodulin, and plasminogen activator inhibitor-1] in samples from 80 patients. The results demonstrate that together ST2, ANG2,Item Decreased vascular reactivity associated with increased IL-8 in 6-month-old infants of mothers with pre-eclampsia(Springer Nature, 2024) Kua, Kok Lim; Rhoads, Eli; Slaven, James E.; Edwards, Shanique; Haas, David M.; Ren, Clement L.; Tiller, Christina; Bjerregaard, Jeffrey; Haneline, Laura S.; Tepper, Robert S.; Pediatrics, School of MedicineBackground: Offspring born to mothers with pre-eclampsia (Pre-E) suffer higher risks of adult cardiovascular diseases, suggesting that exposure to an antiangiogenic environment in-utero has a lasting impact on the development of endothelial function. The goal of this study is to test the hypothesis that in-utero exposure to Pre-E results in alterations of angiogenic factors/cytokines that negatively impact vascular development during infancy. Methods: Infants born from mothers with and without Pre-E were recruited and followed up at 6 months. Plasma cytokines, blood pressure, microvessel density, and vascular reactivity were assessed. Results: 6-month-old infants born to mothers with Pre-E had unchanged blood pressure (p = 0.86) and microvessel density (p = 0.57). Vascular reactivity was decreased in infants born to mothers with Pre-E compared to infants born to healthy mothers (p = 0.0345). Interleukin 8 (IL-8) (p = 0.03) and Angiopoeitin-2 (Ang-2) (p = 0.04) were increased in infants born to mothers with Pre-E. We observed that higher IL-8 was associated with lower vascular reactivity (rho = -0.14, p < 0.0001). Conclusion: At 6 months of age, infants born to mothers with Pre-E had impaired vascular reactivity and higher IL-8 and Ang-2, but similar blood pressure and microvessel density compared to infants born to non-Pre-E mothers. Impact statement: Changes in cord blood antiangiogenic factors are documented in infants of mothers with pre-eclampsia and may contribute to offspring risks of adult cardiovascular disease. How these factors evolve during early infancy and their correlation with offspring vascular development have not been studied. This study found that 6-month-old infants born to mothers with pre-eclampsia had decreased vascular reactivity, which was correlated with higher IL-8. These findings underscore the lasting impact of maternal pre-eclampsia on offspring vascular development and highlight the need for long-term follow-up in children born to mothers with pre-eclampsia.Item Dishevelled-associated activator of morphogenesis 1 (Daam1) is required for heart morphogenesis(2011-01) Li, Deqiang; Hallett, Mark A.; Zhu, Wuqiang; Rubart, Michael; Liu, Ying; Yang, Zhenyun; Chen, Hanying; Haneline, Laura S.; Chan, Rebecca J.; Schwartz, Robert J.; Field, Loren J.; Atkinson, Simon J.; Shou, WeinianDishevelled-associated activator of morphogenesis 1 (Daam1), a member of the formin protein family, plays an important role in regulating the actin cytoskeleton via mediation of linear actin assembly. Previous functional studies of Daam1 in lower species suggest its essential role in Drosophila trachea formation and Xenopus gastrulation. However, its in vivo physiological function in mammalian systems is largely unknown. We have generated Daam1-deficient mice via gene-trap technology and found that Daam1 is highly expressed in developing murine organs, including the heart. Daam1-deficient mice exhibit embryonic and neonatal lethality and suffer multiple cardiac defects, including ventricular noncompaction, double outlet right ventricles and ventricular septal defects. In vivo genetic rescue experiments further confirm that the lethality of Daam1-deficient mice results from the inherent cardiac abnormalities. In-depth analyses have revealed that Daam1 is important for regulating filamentous actin assembly and organization, and consequently for cytoskeletal function in cardiomyocytes, which contributes to proper heart morphogenesis. Daam1 is also found to be important for proper cytoskeletal architecture and functionalities in embryonic fibroblasts. Biochemical analyses indicate that Daam1 does not regulate cytoskeletal organization through RhoA, Rac1 or Cdc42. Our study highlights a crucial role for Daam1 in regulating the actin cytoskeleton and tissue morphogenesis.Item Elevated transgelin reduces function of endothelial colony forming cells from gestational diabetic pregnancies(Office of the Vice Chancellor for Research, 2016-04-08) Varberg, Kaela M.; Garretson, Rashell O.; Blue, Emily K.; Haneline, Laura S.Fetal exposure to maternal diabetes predisposes children to future complications including hypertension and cardiovascular disease. A key mechanism by which these complications are thought to occur and persist is through the functional impairment of vascular progenitor cells, including endothelial colony forming cells (ECFCs). Previously, we showed that ECFCs exposed to gestational diabetes exhibit functional deficits, such as impaired vessel formation, but also differential gene expression compared to uncomplicated controls. One gene that was confirmed to be significantly upregulated in ECFCS from diabetic pregnancies was transgelin, an actin-binding smooth muscle protein. However, the functional consequences of increased transgelin in ECFCs are unknown. Therefore, to determine if transgelin is sufficient and required to induce dysfunction of ECFCs from diabetic pregnancies, transgelin protein levels were manipulated using genetic methods. Specifically, lentiviral overexpression and siRNA knockdown techniques were used in ECFCs from control and diabetic pregnancies respectively. Network formation assays and trans-well migration assays were performed to assess whether alteration of transgelin levels impact ECFC vasculogenesis and migration. Decreasing transgelin expression in diabetes-exposed ECFCs increased network formation (n=15, p<0.05) and cell migration (n=12, p<0.05). Conversely, overexpression of transgelin in ECFCs from uncomplicated pregnancies decreased network formation (n=12, p<0.05). Additional studies are underway to further elucidate intracellular signaling altered as a result of increased transgelin expression in diabetes-exposed ECFCs. Delineating the mechanisms underlying ECFC functional deficits will aid in the understanding of how and why chronic vascular complications persist in children born to mothers with diabetes.Item Endothelial Colony-Forming Cell Function Is Reduced During HIV Infection(Oxford Academic, 2019-04-01) Gupta, Samir K.; Liu, Ziyue; Sims, Emily C.; Repass, Matthew J.; Haneline, Laura S.; Yoder, Mervin C.; Medicine, School of MedicineBackground: Human immunodeficiency virus (HIV) may be related to cardiovascular disease through monocyte activation-associated endothelial dysfunction. Methods: Blood samples from 15 HIV-negative participants (the uninfected group), 8 HIV-positive participants who were not receiving antiretroviral therapy (ART) (the infected, untreated group), and 15 HIV-positive participants who were receiving ART (the infected, treated group) underwent flow cytometry of endothelial colony-forming cells (ECFCs) and monocyte proportions. IncuCyte live cell imaging of 8 capillary proliferative capacity parameters were obtained from cord blood ECFCs treated with participant plasma. Results: The ECFC percentage determined by flow cytometry was not different between the study groups; however, values of the majority of capillary proliferative capacity parameters (ie, cell area, network length, network branch points, number of networks, and average tube width uniformity) were significantly lower in infected, untreated participants as compared to values for uninfected participants or infected, treated participants (P < .00625 for all comparisons). CD14+CD16+ intermediate monocytes and soluble CD163 were significantly and negatively correlated with several plasma-treated, cord blood ECFC proliferative capacity parameters in the combined HIV-positive groups but not in the uninfected group. Conclusions: Cord blood ECFC proliferative capacity was significantly impaired by plasma from infected, untreated patients, compared with plasma from uninfected participants and from infected, treated participants. Several ECFC functional parameters were adversely associated with monocyte activation in the HIV-positive groups, thereby suggesting a mechanism by which HIV-related inflammation may impair vascular reparative potential and consequently increase the risk of cardiovascular disease during HIV infection.Item Engineering bioactive nanoparticles to rejuvenate vascular progenitor cells(Springer Nature, 2022-06-29) Bui, Loan; Edwards, Shanique; Hall, Eva; Alderfer, Laura; Round, Kellen; Owen, Madeline; Sainaghi, Pietro; Zhang, Siyuan; Nallathamby, Prakash D.; Haneline, Laura S.; Hanjaya-Putra, Donny; Pediatrics, School of MedicineFetal exposure to gestational diabetes mellitus (GDM) predisposes children to future health complications including type-2 diabetes mellitus, hypertension, and cardiovascular disease. A key mechanism by which these complications occur is through stress-induced dysfunction of endothelial progenitor cells (EPCs), including endothelial colony-forming cells (ECFCs). Although several approaches have been previously explored to restore endothelial function, their widespread adoption remains tampered by systemic side effects of adjuvant drugs and unintended immune response of gene therapies. Here, we report a strategy to rejuvenate circulating vascular progenitor cells by conjugation of drug-loaded liposomal nanoparticles directly to the surface of GDM-exposed ECFCs (GDM-ECFCs). Bioactive nanoparticles can be robustly conjugated to the surface of ECFCs without altering cell viability and key progenitor phenotypes. Moreover, controlled delivery of therapeutic drugs to GDM-ECFCs is able to normalize transgelin (TAGLN) expression and improve cell migration, which is a critical key step in establishing functional vascular networks. More importantly, sustained pseudo-autocrine stimulation with bioactive nanoparticles is able to improve in vitro and in vivo vasculogenesis of GDM-ECFCs. Collectively, these findings highlight a simple, yet promising strategy to rejuvenate GDM-ECFCs and improve their therapeutic potential. Promising results from this study warrant future investigations on the prospect of the proposed strategy to improve dysfunctional vascular progenitor cells in the context of other chronic diseases, which has broad implications for addressing various cardiovascular complications, as well as advancing tissue repair and regenerative medicine.Item Epigenetic regulation in neonatal ECFCs following intrauterine exposure to gestational diabetes(Office of the Vice Chancellor for Research, 2015-04-17) Blue, Emily K.; Sheehan, BreAnn M.; Nuss, Zia V.; Gohn, Cassandra R.; Varberg, Kaela M.; McClintick, Jeanette N.; Haneline, Laura S.Gestational diabetes (GDM) complicates up to 10% of pregnancies. In addition to acute risks, the children of diabetic mothers have an increased risk of obesity, diabetes, and hypertension, starting in childhood. While the causes of this increased risk are unknown, previous studies in our lab have identified functional deficits in endothelial colony forming cells (ECFCs) isolated from the cord blood of GDM pregnancies. This study focused on identifying genes that have altered epigenetic modifications that result in abnormal mRNA and protein expression in ECFCs from the cord blood GDM pregnancies. The objective of this study was to identify mRNA expression and DNA methylation alterations in ECFCs that may help identify the causes of ECFC dysfunction following intrauterine exposure to GDM. ECFCs were obtained from control and GDM pregnancies. DNA, RNA, and protein samples were isolated in parallel from ECFCs. RNA microarray analysis using the Affymetrix Human 1.0 Gene Array was used to identify gene expression alterations in GDM ECFCs compared to control ECFCs. Genome-wide DNA methylation was assessed using an Infinium 450K Methylation Array for DNA samples at >450,000 CpG sites. Correlation analysis was performed to identify possible sites that have altered CpG methylation and RNA expression. RNA expression results were validated using qRT-PCR and western blotting. Bisulfite sequencing of genomic DNA from the ECFCs was performed to identify additional sites with altered methylation for regions not included in the DNA methylation array. Of the 28,000 genetic loci tested, 596 mRNAs were altered between control and GDM ECFCs (p<0.01). More stringent criteria identified 38 genes for further investigation by limiting analysis to genes that exhibited increased or decreased expression by at least 50%, with a p<0.01. PLAC8 was identified as being increased 5-fold by microarray analysis, a result which was confirmed in two cohorts by qRT-PCR and western blotting. Analysis of the methylation array and bisulfite sequencing results revealed 3 regions surrounding the transcriptional start site of PLAC8 gene whose CpG methylation negatively correlate with RNA expression in samples from control and GDM ECFCs. In contrast, a CpG island is fully unmethylated in both control and GDM ECFCs. The discovery of CpG sites whose methylation correlates with PLAC8 mRNA expression in ECFCs is consistent with the hypothesis that intrauterine exposure to GDM results in epigenetic changes. Analysis of methylation at this site could be used as a biomarker for children of mothers with GDM who may be at risk for disease later in life. Using bisulfite pyrosequencing, we are currently developing assays to quickly determine if methylation of the PLAC8 putative promoter region is altered in cord blood mononuclear cells obtained from GDM or healthy control pregnancies. We are also investigating the role of methylation in regulating PLAC8 RNA expression, determining if there is altered histone modifications and transcription factor binding in these regions, and examining other genes that may comprise a molecular signature of ECFC dysfunction.