- Browse by Author
Browsing by Author "Hall, Matthew D."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Displacement of WDR5 from Chromatin by a WIN Site Inhibitor with Picomolar Affinity(Elsevier, 2019-03-12) Aho, Erin R.; Wang, Jing; Gogliotti, Rocco D.; Howard, Gregory C.; Phan, Jason; Acharya, Pankaj; Macdonald, Jonathan D.; Cheng, Ken; Lorey, Shelly L.; Lu, Bin; Wenzel, Sabine; Foshage, Audra M.; Alvarado, Joseph; Wang, Feng; Shaw, J. Grace; Zhao, Bin; Weissmiller, April M.; Thomas, Lance R.; Vakoc, Christopher R.; Hall, Matthew D.; Hiebert, Scott W.; Liu, Qi; Stauffer, Shaun R.; Fesik, Stephen W.; Tansey, William P.; Biochemistry and Molecular Biology, School of MedicineThe chromatin-associated protein WDR5 is a promising target for pharmacological inhibition in cancer. Drug discovery efforts center on the blockade of the "WIN site" of WDR5, a well-defined pocket that is amenable to small molecule inhibition. Various cancer contexts have been proposed to be targets for WIN site inhibitors, but a lack of understanding of WDR5 target genes and of the primary effects of WIN site inhibitors hampers their utility. Here, by the discovery of potent WIN site inhibitors, we demonstrate that the WIN site links WDR5 to chromatin at a small cohort of loci, including a specific subset of ribosome protein genes. WIN site inhibitors rapidly displace WDR5 from chromatin and decrease the expression of associated genes, causing translational inhibition, nucleolar stress, and p53 induction. Our studies define a mode by which WDR5 engages chromatin and forecast that WIN site blockade could have utility against multiple cancer types.Item Human GPR17 missense variants identified in metabolic disease patients have distinct downstream signaling profiles(Elsevier, 2021-07) Conley, Jason M.; Sun, Hongmao; Ayers, Kristin L.; Zhu, Hu; Chen, Rong; Shen, Min; Hall, Matthew D.; Ren, Hongxia; Pediatrics, School of MedicineGPR17 is a G-protein-coupled receptor (GPCR) implicated in the regulation of glucose metabolism and energy homeostasis. Such evidence is primarily drawn from mouse knockout studies and suggests GPR17 as a potential novel therapeutic target for the treatment of metabolic diseases. However, links between human GPR17 genetic variants, downstream cellular signaling, and metabolic diseases have yet to be reported. Here, we analyzed GPR17 coding sequences from control and disease cohorts consisting of individuals with adverse clinical metabolic deficits including severe insulin resistance, hypercholesterolemia, and obesity. We identified 18 nonsynonymous GPR17 variants, including eight variants that were exclusive to the disease cohort. We characterized the protein expression levels, membrane localization, and downstream signaling profiles of nine GPR17 variants (F43L, V96M, V103M, D105N, A131T, G136S, R248Q, R301H, and G354V). These nine GPR17 variants had similar protein expression and subcellular localization as wild-type GPR17; however, they showed diverse downstream signaling profiles. GPR17-G136S lost the capacity for agonist-mediated cAMP, Ca2+, and β-arrestin signaling. GPR17-V96M retained cAMP inhibition similar to GPR17-WT, but showed impaired Ca2+ and β-arrestin signaling. GPR17-D105N displayed impaired cAMP and Ca2+ signaling, but unaffected agonist-stimulated β-arrestin recruitment. The identification and functional profiling of naturally occurring human GPR17 variants from individuals with metabolic diseases revealed receptor variants with diverse signaling profiles, including differential signaling perturbations that resulted in GPCR signaling bias. Our findings provide a framework for structure-function relationship studies of GPR17 signaling and metabolic disease.