- Browse by Author
Browsing by Author "Haldar, Kasturi"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Eukaryotic virulence determinants utilize phosphoinositides at the ER and host cell surface(Elsevier, 2013) Jiang, Rays H. Y.; Stahelin, Robert V.; Bhattacharjee, Souvik; Haldar, Kasturi; Biochemistry and Molecular Biology, School of MedicineSimilar to bacteria, eukaryotic pathogens may utilize common strategies of pathogenic secretion, because effector proteins from the oomycete Phytophthora infestans and virulence determinants from the human malaria parasite Plasmodium falciparum share a functionally equivalent host-cell-targeting motif (RxLR-dEER in P. infestans and RxLxE/D/Q in P. falciparum). Here we summarize recent studies that reveal that the malarial motif may function differently than previously envisioned. Binding of the lipid phosphatidylinositol 3-phosphate [PI(3)P] is a critical step in accessing the host for both pathogens, but occurs in different locations. Nanomolar affinity for PI(3)P by these short amino acid motifs suggests that a newly identified mechanism of phosphoinositide binding that unexpectedly occurs in secretory locations has been exploited for virulence by diverse eukaryotic pathogens.Item Genomic Expression Analyses Reveal Lysosomal, Innate Immunity Proteins, as Disease Correlates in Murine Models of a Lysosomal Storage Disorder(Public Library of Science, 2012) Alam, Md. Suhail; Getz, Michelle; Safeukui, Innocent; Yi, Sue; Tamez, Pamela; Shin, Jenny; Velázquez, Peter; Haldar, Kasturi; Microbiology and Immunology, School of MedicineNiemann-Pick Type C (NPC) disease is a rare, genetic, lysosomal disorder with progressive neurodegeneration. Poor understanding of the pathophysiology and a lack of blood-based diagnostic markers are major hurdles in the treatment and management of NPC and several additional, neurological lysosomal disorders. To identify disease severity correlates, we undertook whole genome expression profiling of sentinel organs, brain, liver, and spleen of Balb/c Npc1(-/-) mice relative to Npc1(+/-) at an asymptomatic stage, as well as early- and late-symptomatic stages. Unexpectedly, we found prominent up regulation of innate immunity genes with age-dependent change in their expression, in all three organs. We shortlisted a set of 12 secretory genes whose expression steadily increased with age in both brain and liver, as potential plasma correlates of neurological and/or liver disease. Ten were innate immune genes with eight ascribed to lysosomes. Several are known to be elevated in diseased organs of murine models of other lysosomal diseases including Gaucher's disease, Sandhoff disease and MPSIIIB. We validated the top candidate lysozyme, in the plasma of Npc1(-/-) as well as Balb/c Npc1(nmf164) mice (bearing a point mutation closer to human disease mutants) and show its reduction in response to an emerging therapeutic. We further established elevation of innate immunity in Npc1(-/-) mice through multiple functional assays including inhibition of bacterial infection as well as cellular analysis and immunohistochemistry. These data revealed neutrophil elevation in the Npc1(-/-) spleen and liver (where large foci were detected proximal to damaged tissue). Together our results yield a set of lysosomal, secretory innate immunity genes that have potential to be developed as pan or specific plasma markers for neurological diseases associated with lysosomal storage and where diagnosis is a major problem. Further, the accumulation of neutrophils in diseased organs (hitherto not associated with NPC) suggests their role in pathophysiology and disease exacerbation.Item Host-targeting of virulence determinants and phosphoinositides in blood stage malaria parasites(Elsevier, 2012) Bhattacharjee, Souvik; Stahelin, Robert V.; Haldar, Kasturi; Biochemistry and Molecular Biology, School of MedicineBlood stage malaria parasites target a 'secretome' of hundreds of proteins including virulence determinants containing a host (cell) targeting (HT) signal, to human erythrocytes. Recent studies reveal that the export mechanism is due to the HT signal binding to the lipid phosphatidylinositol-3-phosphate [PI(3)P] in the parasite endoplasmic reticulum (ER). An aspartic protease plasmepsin V which cleaves a specialized form of the HT signal was previously thought to be the export mechanism, but is now recognized as a dedicated peptidase that cleaves the signal anchor subsequent to PI(3)P binding. We discuss a model of PI(3)P-dependent targeting and PI(3)P biology of a major human pathogen.Item Malaria induces anemia through CD8+ T cell-dependent parasite clearance and erythrocyte removal in the spleen(American Society for Microbiology, 2015-01-20) Safeukui, Innocent; Gomez, Noé D.; Adelani, Aanuoluwa A.; Burte, Florence; Afolabi, Nathaniel K.; Akondy, Rama; Velazquez, Peter; Holder, Anthony; Tewari, Rita; Buffet, Pierre; Brown, Biobele J.; Shokunbi, Wuraola A.; Olaleye, David; Sodeinde, Olugbemiro; Kazura, James; Ahmed, Rafi; Mohandas, Narla; Fernandez-Reyes, Delmiro; Haldar, Kasturi; Microbiology and Immunology, School of MedicineSevere malarial anemia (SMA) in semi-immune individuals eliminates both infected and uninfected erythrocytes and is a frequent fatal complication. It is proportional not to circulating parasitemia but total parasite mass (sequestered) in the organs. Thus, immune responses that clear parasites in organs may trigger changes leading to anemia. Here, we use an outbred-rat model where increasing parasite removal in the spleen escalated uninfected-erythrocyte removal. Splenic parasite clearance was associated with activated CD8(+) T cells, immunodepletion of which prevented parasite clearance. CD8(+) T cell repletion and concomitant reduction of the parasite load was associated with exacerbated (40 to 60%) hemoglobin loss and changes in properties of uninfected erythrocytes. Together, these data suggest that CD8(+) T cell-dependent parasite clearance causes erythrocyte removal in the spleen and thus anemia. In children infected with the human malaria parasite Plasmodium falciparum, elevation of parasite biomass (not the number of circulating parasites) increased the odds ratio for SMA by 3.5-fold (95% confidence intervals [CI95%], 1.8- to 7.5-fold). CD8(+) T cell expansion/activation independently increased the odds ratio by 2.4-fold (CI95%, 1.0- to 5.7-fold). Concomitant increases in both conferred a 7-fold (CI95%, 1.9- to 27.4-fold)-greater risk for SMA. Together, these data suggest that CD8(+)-dependent parasite clearance may predispose individuals to uninfected-erythrocyte loss and SMA, thus informing severe disease diagnosis and strategies for vaccine development. IMPORTANCE: Malaria is a major global health problem. Severe malaria anemia (SMA) is a complex disease associated with partial immunity. Rapid hemoglobin reductions of 20 to 50% are commonly observed and must be rescued by transfusion (which can carry a risk of HIV acquisition). The causes and risk factors of SMA remain poorly understood. Recent studies suggest that SMA is linked to parasite biomass sequestered in organs. This led us to investigate whether immune mechanisms that clear parasites in organs trigger anemia. In rats, erythropoiesis is largely restricted to the bone marrow, and critical aspects of the spleen expected to be important in anemia are similar to those in humans. Therefore, using a rat model, we show that severe anemia is caused through CD8(+) T cell-dependent parasite clearance and erythrocyte removal in the spleen. CD8 activation may also be a new risk factor for SMA in African children.Item A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria(Springer Nature, 2015-04-30) Mbengue, Alassane; Bhattacharjee, Souvik; Pandharkar, Trupti; Liu, Liu; Estiu, Guillermina; Stahelin, Robert V.; Rizk, Shahir; Njimoh, Dieudonne L.; Ryan, Yana; Chotivanich, Kesinee; Nguon, Chea; Ghorbal, Mehdi; Lopez-Rubio, Jose-Juan; Pfrender, Michael; Emrich, Scott; Mohandas, Narla; Dondorp, Arjen M.; Wiest, Olaf; Haldar, Kasturi; Department of Chemistry & Chemical Biology, School of ScienceArtemisinins are the cornerstone of anti-malarial drugs. Emergence and spread of resistance to them raises risk of wiping out recent gains achieved in reducing worldwide malaria burden and threatens future malaria control and elimination on a global level. Genome-wide association studies (GWAS) have revealed parasite genetic loci associated with artemisinin resistance. However, there is no consensus on biochemical targets of artemisinin. Whether and how these targets interact with genes identified by GWAS, remains unknown. Here we provide biochemical and cellular evidence that artemisinins are potent inhibitors of Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K), revealing an unexpected mechanism of action. In resistant clinical strains, increased PfPI3K was associated with the C580Y mutation in P. falciparum Kelch13 (PfKelch13), a primary marker of artemisinin resistance. Polyubiquitination of PfPI3K and its binding to PfKelch13 were reduced by the PfKelch13 mutation, which limited proteolysis of PfPI3K and thus increased levels of the kinase, as well as its lipid product phosphatidylinositol-3-phosphate (PI3P). We find PI3P levels to be predictive of artemisinin resistance in both clinical and engineered laboratory parasites as well as across non-isogenic strains. Elevated PI3P induced artemisinin resistance in absence of PfKelch13 mutations, but remained responsive to regulation by PfKelch13. Evidence is presented for PI3P-dependent signalling in which transgenic expression of an additional kinase confers resistance. Together these data present PI3P as the key mediator of artemisinin resistance and the sole PfPI3K as an important target for malaria elimination.Item Remodeling of the malaria parasite and host human red cell by vesicle amplification that induces artemisinin resistance(American Society of Hematology, 2018-03-15) Bhattacharjee, Souvik; Coppens, Isabelle; Mbengue, Alassane; Suresh, Niraja; Ghorbal, Mehdi; Slouka, Zdenek; Safeukui, Innocent; Tang, Hsin-Yao; Speicher, David W.; Stahelin, Robert V.; Mohandas, Narla; Haldar, Kasturi; Biochemistry and Molecular Biology, School of MedicineArtemisinin resistance threatens worldwide malaria control and elimination. Elevation of phosphatidylinositol-3-phosphate (PI3P) can induce resistance in blood stages of Plasmodium falciparum The parasite unfolded protein response (UPR) has also been implicated as a proteostatic mechanism that may diminish artemisinin-induced toxic proteopathy. How PI3P acts and its connection to the UPR remain unknown, although both are conferred by mutation in P falciparum Kelch13 (K13), the marker of artemisinin resistance. Here we used cryoimmunoelectron microscopy to show that K13 concentrates at PI3P tubules/vesicles of the parasite's endoplasmic reticulum (ER) in infected red cells. K13 colocalizes and copurifies with the major virulence adhesin PfEMP1. The PfEMP1-K13 proteome is comprehensively enriched in multiple proteostasis systems of protein export, quality control, and folding in the ER and cytoplasm and UPR. Synthetic elevation of PI3P that induces resistance in absence of K13 mutation also yields signatures of proteostasis and clinical resistance. These findings imply a key role for PI3P-vesicle amplification as a mechanism of resistance of infected red cells. As validation, the major resistance mutation K13C580Y quantitatively increased PI3P tubules/vesicles, exporting them throughout the parasite and the red cell. Chemical inhibitors and fluorescence microscopy showed that alterations in PfEMP1 export to the red cell and cytoadherence of infected cells to a host endothelial receptor are features of multiple K13 mutants. Together these data suggest that amplified PI3P vesicles disseminate widespread proteostatic capacity that may neutralize artemisinins toxic proteopathy and implicate a role for the host red cell in artemisinin resistance. The mechanistic insights generated will have an impact on malaria drug development.