- Browse by Author
Browsing by Author "Gu, Dongsheng"
Now showing 1 - 10 of 16
Results Per Page
Sort Options
Item Activation of the Hedgehog signaling pathway leads to fibrosis in aortic valves(BMC, 2023-03-02) Gu, Dongsheng; Soepriatna, Arvin H.; Zhang, Wenjun; Li, Jun; Zhao, Jenny; Zhang, Xiaoli; Shu, Xianhong; Wang, Yongshi; Landis, Benjamin J.; Goergen, Craig J.; Xie, Jingwu; Pediatrics, School of MedicineBackground: Fibrosis is a pathological wound healing process characterized by excessive extracellular matrix deposition, which interferes with normal organ function and contributes to ~ 45% of human mortality. Fibrosis develops in response to chronic injury in nearly all organs, but the a cascade of events leading to fibrosis remains unclear. While hedgehog (Hh) signaling activation has been associated with fibrosis in the lung, kidney, and skin, it is unknown whether hedgehog signaling activation is the cause or the consequence of fibrosis. We hypothesize that activation of hedgehog signaling is sufficient to drive fibrosis in mouse models. Results: In this study, we provide direct evidence to show that activation of Hh signaling via expression of activated smoothened, SmoM2, is sufficient to induce fibrosis in the vasculature and aortic valves. We showed that activated SmoM2 -induced fibrosis is associated with abnormal function of aortic valves and heart. The relevance of this mouse model to human health is reflected in our findings that elevated GLI expression is detected in 6 out of 11 aortic valves from patients with fibrotic aortic valves. Conclusions: Our data show that activating hedgehog signaling is sufficient to drive fibrosis in mice, and this mouse model is relevant to human aortic valve stenosis.Item Characterization and Function of Cryopreserved Bone Marrow from Deceased Organ Donors: A Potential Viable Alternative Graft Source(Elsevier, 2023) Johnstone, Brian H.; Woods, John R.; Goebel, W. Scott; Gu, Dongsheng; Lin, Chieh-Han; Miller, Hannah M.; Musall, Kelsey M.; Sherry, Aubrey M.; Bailey, Barbara J.; Sims, Emily; Sinn, Anthony L.; Pollok, Karen E.; Spellman, Stephen; Auletta, Jeffrey J.; Woods, Erik J.; Pediatrics, School of MedicineDespite the readily available graft sources for allogeneic hematopoietic cell transplantation (alloHCT), a significant unmet need remains in the timely provision of suitable unrelated donor grafts. This shortage is related to the rarity of certain HLA alleles in the donor pool, nonclearance of donors owing to infectious disease or general health status, and prolonged graft procurement and processing times. An alternative hematopoietic progenitor cell (HPC) graft source obtained from the vertebral bodies (VBs) of deceased organ donors could alleviate many of the obstacles associated with using grafts from healthy living donors or umbilical cord blood (UCB). Deceased organ donor-derived bone marrow (BM) can be preemptively screened, cryogenically banked for on-demand use, and made available in adequate cell doses for HCT. We have developed a good manufacturing practice (GMP)-compliant process to recover and cryogenically bank VB-derived HPCs from deceased organ donor (OD) BM. Here we present results from an analysis of HPCs from BM obtained from 250 deceased donors to identify any substantial difference in composition or quality compared with HPCs from BM aspirated from the iliac crests of healthy living donors. BM from deceased donor VBs was processed in a central GMP facility and packaged for cryopreservation in 5% DMSO/2.5% human serum albumin. BM aspirated from living donor iliac crests was obtained and used for comparison. A portion of each specimen was analyzed before and after cryopreservation by flow cytometry and colony-forming unit potential. Bone marrow chimerism potential was assessed in irradiated immunocompromised NSG mice. Analysis of variance with Bonferroni correction for multiple comparisons was used to determine how cryopreservation affects BM cells and to evaluate indicators of successful engraftment of BM cells into irradiated murine models. The t test (with 95% confidence intervals [CIs]) was used to compare cells from deceased donors and living donors. A final dataset of complete clinical and matched laboratory data from 226 cryopreserved samples was used in linear regressions to predict outcomes of BM HPC processing. When compared before and after cryopreservation, OD-derived BM HPCs were found to be stable, with CD34+ cells maintaining high viability and function after thawing. The yield from a single donor is sufficient for transplantation of an average of 1.6 patients (range, 1.2 to 7.5). CD34+ cells from OD-derived HPCs from BM productively engrafted sublethally irradiated immunocompromised mouse BM (>44% and >67% chimerism at 8 and 16 weeks, respectively). Flow cytometry and secondary transplantation confirmed that OD HPCs from BM is composed of long-term engrafting CD34+CD38-CD45RA-CD90+CD49f+ HSCs. Linear regression identified no meaningful predictive associations between selected donor-related characteristics and OD BM HPC quality or yield. Collectively, these data demonstrate that cryopreserved BM HPCs from deceased organ donors is potent and functionally equivalent to living donor BM HPCs and is a viable on-demand graft source for clinical HCT. Prospective clinical trials will soon commence in collaboration with the Center for International Blood and Marrow Research to assess the feasibility, safety, and efficacy of Ossium HPCs from BM (ClinicalTrials.gov identifier NCT05068401).Item A critical role of AREG for bleomycin-induced skin fibrosis(BMC, 2021) Zhang, Mary Yinghua; Fang, Shuyi; Gao, Hongyu; Zhang, Xiaoli; Gu, Dongsheng; Liu, Yunlong; Wan, Jun; Xie, Jingwu; Pediatrics, School of MedicineWe report our discovery of an important player in the development of skin fibrosis, a hallmark of scleroderma. Scleroderma is a fibrotic disease, affecting 70,000 to 150,000 Americans. Fibrosis is a pathological wound healing process that produces an excessive extracellular matrix to interfere with normal organ function. Fibrosis contributes to nearly half of human mortality. Scleroderma has heterogeneous phenotypes, unpredictable outcomes, no validated biomarkers, and no effective treatment. Thus, strategies to slow down scleroderma progression represent an urgent medical need. While a pathological wound healing process like fibrosis leaves scars and weakens organ function, oral mucosa wound healing is a scarless process. After re-analyses of gene expression datasets from oral mucosa wound healing and skin fibrosis, we discovered that several pathways constitutively activated in skin fibrosis are transiently induced during oral mucosa wound healing process, particularly the amphiregulin (Areg) gene. Areg expression is upregulated ~ 10 folds 24hrs after oral mucosa wound but reduced to the basal level 3 days later. During bleomycin-induced skin fibrosis, a commonly used mouse model for skin fibrosis, Areg is up-regulated throughout the fibrogenesis and is associated with elevated cell proliferation in the dermis. To demonstrate the role of Areg for skin fibrosis, we used mice with Areg knockout, and found that Areg deficiency essentially prevents bleomycin-induced skin fibrosis. We further determined that bleomycin-induced cell proliferation in the dermis was not observed in the Areg null mice. Furthermore, we found that inhibiting MEK, a downstream signaling effector of Areg, by selumetinib also effectively blocked bleomycin-based skin fibrosis model. Based on these results, we concluded that the Areg-EGFR-MEK signaling axis is critical for skin fibrosis development. Blocking this signaling axis may be effective in treating scleroderma.Item Deciphering the role of hedgehog signaling in pancreatic cancer.(JBR, 2016-09) Gu, Dongsheng; Schlotman, Kelly E.; Xie, Jingwu; Department of Pediatrics, IU School of MedicinePancreatic cancer, mostly pancreatic ductal adenocarcinoma (PDAC), is a leading cause of cancer-related death in the US, with a dismal median survival of 6 months. Thus, there is an urgent unmet need to identify ways to diagnose and to treat this deadly cancer. Although a number of genetic changes have been identified in pancreatic cancer, their mechanisms of action in tumor development, progression and metastasis are not completely understood. Hedgehog signaling, which plays a major role in embryonic development and stem cell regulation, is known to be activated in pancreatic cancer; however, specific inhibitors targeting the smoothened molecule failed to improve the condition of pancreatic cancer patients in clinical trials. Furthermore, results regarding the role of Hh signaling in pancreatic cancer are controversial with some reporting tumor promoting activities whereas others tumor suppressive actions. In this review, we will summarize what we know about hedgehog signaling in pancreatic cancer, and try to explain the contradicting roles of hedgehog signaling as well as the reason(s) behind the failed clinical trials. In addition to the canonical hedgehog signaling, we will also discuss several non-canonical hedgehog signaling mechanisms.Item Defective TGFβ signaling in bone marrow-derived cells prevents Hedgehog-induced skin tumors(American Association for Cancer Research, 2014-01-15) Fan, Qipeng; Gu, Dongsheng; Liu, Hailan; Yang, Ling; Zhang, Xiaoli; Yoder, Mervin C.; Kaplan, Mark H.; Xie, Jingwu; Department of Pediatrics, IU School of MedicineHedgehog (Hh) signaling in cancer cells drives changes in the tumor microenvironment that are incompletely understood. Here we report that Hh- driven tumors exhibit an increase in myeloid-derived suppressor cells (MDSC) and a decrease in T cells, indicative of an immune suppressive tumor microenvironment. This change was associated with activated TGFβ signaling in several cell types in BCCs. We determined that TGFβ signaling in bone marrow (BM)-derived cells, not keratinocytes, regulates MDSC and promotes tumor development. Tgfbr2 deficiency in the BM-derived cells also reduced the size of previously developed tumors in mice. We identified CCL2 as the major chemokine attracting MDSC to tumor, whose expression was Tgfbr2-dependent, whereas its receptor CCR2 was highly expressed in MDSC population. CCL2 alone was sufficient to induce migration of MDSC. Moreover, the CCR2 inhibitors prevented MDSC migration towards skin cells in vitro, reduced MDSC accumulation and Hh signaling-driven tumor development in mice. Our results reveal a signaling network critical for Hh signaling in cancer cells to establish an effective immune suppressive microenvironment during tumor development.Item Functional significance of Hippo/YAP signaling for drug resistance in colorectal cancer(Wiley, 2018) Song, Ruolan; Gu, Dongsheng; Zhang, Lining; Zhang, Xiaoli; Yu, Beiqin; Liu, Bingya; Xie, Jingwu; Pediatrics, School of MedicineColorectal cancer is a leading cause of cancer‐related death worldwide. While early stage colorectal cancer can be removed by surgery, patients with advanced disease are treated by chemotherapy, with 5‐Fluorouracil (5‐FU) as a main ingredient. However, most patients with advanced colorectal cancer eventually succumb to the disease despite some responded initially. Thus, identifying molecular mechanisms responsible for drug resistance will help design novel strategies to treat colorectal cancer. In this study, we analyzed an acquired 5‐FU resistant cell line, LoVo‐R, and determined that elevated expression of YAP target genes is a major alteration in the 5‐FU resistant cells. Hippo/YAP signaling, a pathway essential for cell polarity, is an important regulator for tissue homeostasis, organ size, and stem cells. We demonstrated that knockdown of YAP1 sensitized LoVo‐R cells to 5‐FU treatment in cultured cells and in mice. The relevance of our studies to colorectal cancer patients is reflected by our discovery that high expression of YAP target genes in the tumor was associated with an increased risk of cancer relapse and poor survival in a larger cohort of colorectal cancer patients who underwent 5‐FU‐related chemotherapy. Taken together, we demonstrate a critical role of YAP signaling for drug resistance in colorectal cancer.Item Genetic Evidence for XPC-KRAS Interactions During Lung Cancer Development.(Elsevier, 2015-10-20) Zhang, Xiaoli; He, Nonggao; Gu, Dongsheng; Wickliffe, Jeff; Salazar, James; Boldogh, Istavan; Xie, Jingwu; Department of Pediatrics, IU School of MedicineLung cancer causes more deaths than breast, colorectal and prostate cancers combined. Despite major advances in targeted therapy in a subset of lung adenocarcinomas, the overall 5-year survival rate for lung cancer worldwide has not significantly changed for the last few decades. DNA repair deficiency is known to contribute to lung cancer development. In fact, human polymorphisms in DNA repair genes such as xeroderma pigmentosum group C (XPC) are highly associated with lung cancer incidence. However, the direct genetic evidence for the role of XPC for lung cancer development is still lacking. Mutations of the Kirsten rat sarcoma viral oncogene homolog (Kras) or its downstream effector genes occur in almost all lung cancer cells, and there are a number of mouse models for lung cancer using these mutations. Using activated Kras, KrasLA1, as a driver for lung cancer development in mice, we showed for the first time that mice with KrasLA1 and Xpc knockout had worst outcomes in lung cancer development, and this phenotype was associated with accumulated DNA damage. Using cultured cells, we demonstrated that induced expression of oncogenic KRASG12V led to increased levels of reactive oxygen species (ROS) as well as DNA damage, and both can be suppressed by anti-oxidants. Thus, it appears that XPC may help repair DNA damage caused by KRAS-mediated production of ROS.Item GLI1-mediated regulation of side population is responsible for drug resistance in gastric cancer(Impact Journals, 2017-04-18) Yu, Beiqin; Gu, Dongsheng; Zhang, Xiaoli; Li, Jianfang; Liu, Bingya; Xie, Jingwu; Pediatrics, School of MedicineGastric cancer is the third leading cause of cancer-related mortality worldwide. Chemotherapy is frequently used for gastric cancer treatment. Most patients with advanced gastric cancer eventually succumb to the disease despite some patients responded initially to chemotherapy. Thus, identifying molecular mechanisms responsible for cancer relapse following chemotherapy will help design new ways to treat gastric cancer. In this study, we revealed that the residual cancer cells following treatment with chemotherapeutic reagent cisplatin have elevated expression of hedgehog target genes GLI1, GLI2 and PTCH1, suggestive of hedgehog signaling activation. We showed that GLI1 knockdown sensitized gastric cancer cells to CDDP whereas ectopic GLI1 expression decreased the sensitivity. Further analyses indicate elevated GLI1 expression is associated with an increase in tumor sphere formation, side population and cell surface markers for putative cancer stem cells. We have evidence to support that GLI1 is critical for maintenance of putative cancer stem cells through direct regulation of ABCG2. In fact, GLI1 protein was shown to be associated with the promoter fragment of ABCG2 through a Gli-binding consensus site in gastric cancer cells. Disruption of ABCG2 function, through ectopic expression of an ABCG2 dominant negative construct or a specific ABCG2 inhibitor, increased drug sensitivity of cancer cells both in culture and in mice. The relevance of our studies to gastric cancer patient care is reflected by our discovery that high ABCG2 expression was associated with poor survival in the gastric cancer patients who underwent chemotherapy. Taken together, we have identified a molecular mechanism by which gastric cancer cells gain chemotherapy resistance.Item Identification and characterization of a large source of primary mesenchymal stem cells tightly adhered to bone surfaces of human vertebral body marrow cavities(Elsevier, 2020) Johnstone, Brian H.; Miller, Hannah M.; Beck, Madelyn R.; Gu, Dongsheng; Thirumala, Sreedhar; LaFontaine, Michael; Brandacher, Gerald; Woods, Erik J.; Pediatrics, School of MedicineBackground: Therapeutic allogeneic mesenchymal stromal cells (MSCs) are currently in clinical trials to evaluate their effectiveness in treating many different disease indications. Eventual commercialization for broad distribution will require further improvements in manufacturing processes to economically manufacture MSCs at scales sufficient to satisfy projected demands. A key contributor to the present high cost of goods sold for MSC manufacturing is the need to create master cell banks from multiple donors, which leads to variability in large-scale manufacturing runs. Therefore, the availability of large single donor depots of primary MSCs would greatly benefit the cell therapy market by reducing costs associated with manufacturing. Methods: We have discovered that an abundant population of cells possessing all the hallmarks of MSCs is tightly associated with the vertebral body (VB) bone matrix and only liberated by proteolytic digestion. Here we demonstrate that these vertebral bone-adherent (vBA) MSCs possess all the International Society of Cell and Gene Therapy-defined characteristics (e.g., plastic adherence, surface marker expression and trilineage differentiation) of MSCs, and we have therefore termed them vBA-MSCs to distinguish this population from loosely associated MSCs recovered through aspiration or rinsing of the bone marrow compartment. Results: Pilot banking and expansion were performed with vBA-MSCs obtained from 3 deceased donors, and it was demonstrated that bank sizes averaging 2.9 × 108 ± 1.35 × 108 vBA-MSCs at passage 1 were obtainable from only 5 g of digested VB bone fragments. Each bank of cells demonstrated robust proliferation through a total of 9 passages, without significant reduction in population doubling times. The theoretical total cell yield from the entire amount of bone fragments (approximately 300 g) from each donor with limited expansion through 4 passages is 100 trillion (1 × 1014) vBA-MSCs, equating to over 105 doses at 10 × 106 cells/kg for an average 70-kg recipient. Discussion: Thus, we have established a novel and plentiful source of MSCs that will benefit the cell therapy market by overcoming manufacturing and regulatory inefficiencies due to donor-to-donor variability.Item Longitudinal Bioluminescence Imaging of Primary Versus Abdominal Metastatic Tumor Growth in Orthotopic Pancreatic Tumor Models in NSG Mice(LWW, 2015-01) Shannon, Harlan E.; Fishel, Melissa L.; Xie, Jingwu; Gu, Dongsheng; McCarthy, Brian P.; Riley, Amanda A.; Sinn, Anthony L.; Silver, Jayne M.; Peterman, Kacie; Kelley, Mark R.; Hanenberg, Helmut; Korc, Murray; Pollok, Karen E.; Territo, Paul R.; Department of Pediatrics, School of MedicineObjectives: The purpose of the present study was to develop and validate noninvasive bioluminescence imaging methods for differentially monitoring primary and abdominal metastatic tumor growth in mouse orthotopic models of pancreatic cancer. Methods: A semiautomated maximum entropy segmentation method was implemented for the primary tumor region of interest, and a rule-based method for manually drawing a region of interest for the abdominal metastatic region was developed for monitoring tumor growth in orthotopic models of pancreatic cancer. The 2 region-of-interest methods were validated by having 2 observers independently segment Panc-1 tumors, and the results were compared with the number of mesenteric lymph node nodules and histopathologic assessment of liver metastases. The findings were extended to orthotopic tumors of the more metastatic MIA PaCa-2 and AsPC-1 cells where separate groups of animals were implanted with different numbers of cells. Results: The results demonstrated that the segmentation methods were highly reliable, reproducible, and robust and allowed statistically significant discrimination in the growth rates of primary and abdominal metastatic tumors of different cell lines implanted with different numbers of cells. Conclusions: The present results demonstrate that primary tumors and abdominal metastatic foci in orthotopic pancreatic cancer models can be reliably quantified separately and noninvasively over time with bioluminescence imaging.