- Browse by Author
Browsing by Author "Griswold, Anthony J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item A locus at 19q13.31 significantly reduces the ApoE ε4 risk for Alzheimer's Disease in African Ancestry(Public Library of Science, 2022-07-05) Rajabli, Farid; Beecham, Gary W.; Hendrie, Hugh C.; Baiyewu, Olusegun; Ogunniyi, Adesola; Gao, Sujuan; Kushch, Nicholas A.; Lipkin-Vasquez, Marina; Hamilton-Nelson, Kara L.; Young, Juan I.; Dykxhoorn, Derek M.; Nuytemans, Karen; Kunkle, Brian W.; Wang, Liyong; Jin, Fulai; Liu, Xiaoxiao; Feliciano-Astacio, Briseida E.; Alzheimer’s Disease Sequencing Project; Alzheimer’s Disease Genetic Consortium; Schellenberg, Gerard D.; Dalgard, Clifton L.; Griswold, Anthony J.; Byrd, Goldie S.; Reitz, Christiane; Cuccaro, Michael L.; Haines, Jonathan L.; Pericak-Vance, Margaret A.; Vance, Jeffery M.; Psychiatry, School of MedicineAfrican descent populations have a lower Alzheimer disease risk from ApoE ε4 compared to other populations. Ancestry analysis showed that the difference in risk between African and European populations lies in the ancestral genomic background surrounding the ApoE locus (local ancestry). Identifying the mechanism(s) of this protection could lead to greater insight into the etiology of Alzheimer disease and more personalized therapeutic intervention. Our objective is to follow up the local ancestry finding and identify the genetic variants that drive this risk difference and result in a lower risk for developing Alzheimer disease in African ancestry populations. We performed association analyses using a logistic regression model with the ApoE ε4 allele as an interaction term and adjusted for genome-wide ancestry, age, and sex. Discovery analysis included imputed SNP data of 1,850 Alzheimer disease and 4,331 cognitively intact African American individuals. We performed replication analyses on 63 whole genome sequenced Alzheimer disease and 648 cognitively intact Ibadan individuals. Additionally, we reproduced results using whole-genome sequencing of 273 Alzheimer disease and 275 cognitively intact admixed Puerto Rican individuals. A further comparison was done with SNP imputation from an additional 8,463 Alzheimer disease and 11,365 cognitively intact non-Hispanic White individuals. We identified a significant interaction between the ApoE ε4 allele and the SNP rs10423769_A allele, (β = -0.54,SE = 0.12,p-value = 7.50x10-6) in the discovery data set, and replicated this finding in Ibadan (β = -1.32,SE = 0.52,p-value = 1.15x10-2) and Puerto Rican (β = -1.27,SE = 0.64,p-value = 4.91x10-2) individuals. The non-Hispanic Whites analyses showed an interaction trending in the "protective" direction but failing to pass a 0.05 significance threshold (β = -1.51,SE = 0.84,p-value = 7.26x10-2). The presence of the rs10423769_A allele reduces the odds ratio for Alzheimer disease risk from 7.2 for ApoE ε4/ε4 carriers lacking the A allele to 2.1 for ApoE ε4/ε4 carriers with at least one A allele. This locus is located approximately 2 mB upstream of the ApoE locus, in a large cluster of pregnancy specific beta-1 glycoproteins on chromosome 19 and lies within a long noncoding RNA, ENSG00000282943. This study identified a new African-ancestry specific locus that reduces the risk effect of ApoE ε4 for developing Alzheimer disease. The mechanism of the interaction with ApoEε4 is not known but suggests a novel mechanism for reducing the risk for ε4 carriers opening the possibility for potential ancestry-specific therapeutic intervention.Item Association between known Alzheimer’s disease risk genetic variants and hippocampal atrophy along the Alzheimer’s disease continuum in a Korean cohort(Wiley, 2025-01-03) Ahn, Hyejin; Byun, Min Soo; Yi, Dahyun; Jung, Gijung; Huang, Yen-Ning; Risacher, Shannon L.; Griswold, Anthony J.; Pericak-Vance, Margaret A.; Kim, Yu Kyeong; Lee, Yun-Sang; Sohn, Chul-Ho; Kang, Koung Mi; Lee, Jun-Young; Saykin, Andrew J.; Nho, Kwangsik; Lee, Dong Young; Radiology and Imaging Sciences, School of MedicineBackground: Large‐scale genome‐wide association studies (GWAS) of Alzheimer’s disease (AD) from European ancestry identified many genetic variants associated with clinical diagnosis of AD dementia. However, it remains unclear whether these AD‐related variants are associated with AD biomarkers, particularly hippocampal atrophy, a well‐known neurodegeneration biomarker of AD in a Korean population. In this study, we investigated the association between known AD risk single nucleotide polymorphisms (SNPs) and hippocampal atrophy along the AD continuum in older Korean adults. Method: A total of 487 participants (258 cognitively normal olde adults [CN], 144 mild cognitive impairment [MCI], 85 AD dementia) from the Korean Brain Aging Study for the Early Diagnosis and Prediction of Alzheimer’s disease (KBASE) were included for analysis. All participants underwent 11C‐PiB‐PET/MRI. Hippocampal volume adjusted for intracranial volume (HVa) was obtained from 3D T1‐weighted MRI scans using FreeSurfer and used as a neurodegeneration marker of AD. Global beta‐amyloid (Aβ) deposition was calculated from PiB uptake in the global cortical region‐of‐interest using SPM12. From the genetic evidence gathered by the AD Sequencing Project (ADSP), which consists of 76 SNPs associated with AD, we selected 38 SNPs with a minor allele frequency (MAF) greater than 1% from the genotyping data imputed using the TOPMed imputation server in the KBASE cohort. Result: Among 38 known AD‐related SNPs, three SNPs (rs6966331 in EPDR1, rs2242595 in MYO15A, and rs17125924 in FERMT2) were associated with HVa in an initial exploratory analysis (p<0.05). In a subsequent confirmatory analysis, the associations of rs6966331 in EPDR1 and rs2242595 in MYO15A with HVa remained significant after controlling for age, sex, and APOE4 carrier status, as well as global Aβ deposition (p<0.001 and p = 0.009 for rs6966331 and rs2242595, respectively) (Table 1). Conclusion: Our study identified associations of rs6966331 in EPDR1 and rs2242595 in MYO15A with hippocampal volume in Korean older adults, and these associations were independent of cerebral Aβ deposition and APOE4 carrier status. These findings suggest that these AD‐related loci may contribute to the development of AD dementia via Aβ‐independent neurodegeneration.Item Convergence of genes and cellular pathways dysregulated in autism spectrum disorders(Elsevier, 2014-03-25) Pinto, Dalila; Delaby, Elsa; Merico, Daniele; Barbosa, Mafalda; Merikangas, Alison; Klei, Lambertus; Thiruvahindrapuram, Bhooma; Xu, Xiao; Ziman, Robert; Wang, Zhuozhi; Vorstman, Jacob A.S.; Thompson, Ann; Regan, Regina; Pilorge, Marion; Pellecchia, Giovanna; Pagnamenta, Alistair T.; Oliveira, Barbara; Marshall, Christian R.; Magalhaes, Tiago R.; Lowe, Jennifer K.; Howe, Jennifer L.; Griswold, Anthony J.; Gilbert, John; Duketis, Eftichia; Dombroski, Beth A.; De Jonge, Maretha V.; Cuccaro, Michael; Crawford, Emily L.; Correia, Catarina T.; Conroy, Judith; Conceicao, Ines C.; Chiocchetti, Andreas G.; Casey, Jillian P.; Cai, Guiqing; Cabrol, Christelle; Bolshakova, Nadia; Bacchelli, Elena; Anney, Richard; Gallinger, Steven; Cotterchio, Michelle; Casey, Graham; Zwaigenbaum, Lonnie; Wittemeyer, Kerstin; Wing, Kirsty; Wallace, Simon; van Engeland, Herman; Tryfon, Ana; Thomson, Susanne; Soorya, Latha; Roge´, Bernadette; Roberts, Wendy; Poustka, Fritz; Mouga, Susana; Minshew, Nancy; McInnes, L. Alison; McGrew, Susan G.; Lord, Catherine; Leboyer, Marion; Le Couteur, Ann S.; Kolevzon, Alexander; Gonzalez, Patricia Jimenez; Jacob, Suma; Holt, Richard; Guter, Stephen; Green, Jonathan; Green, Andrew; Gillberg, Christopher; Fernandez, Bridget A.; Duque, Frederico; Delorme, Richard; Dawson, Geraldine; Chaste, Pauline; Cafe, Catia; Brennan, Sean; Bourgeron, Thomas; Thomas, Patrick F.; Bolte, Sven; Bernier, Raphael; Baird, Gillian; Bailey, Anthony J.; Anthony J., Evdokia; Almeida, Joana; Wijsman, Ellen M.; Vieland, Veronica J.; Vicente, Astrid M.; Schellenberg, Gerard D.; Pericak-Vance, Margaret; Paterson, Andrew D.; Parr, Jeremy R.; Oliveira, Guiomar; Nurnberger, John I.; Monaco, Anthony P.; Maestrini, Elena; Klauck, Sabine M.; Hakonarson, Hakon; Haines, Jonathan L.; Geschwind, Daniel H.; Freitag, Christine M.; Folstein, Susan E.; Ennis, Sean; Coon, Hilary; Battaglia, Agatino; Szatmari, Peter; Sutcliffe, James S.; Hallmayer, Joachim; Gill, Michael; Cook, Edwin H.; Buxbaum, Joseph D.; Devlin, Bernie; Gallagher, Louise; Betancur, Catalina; Scherer, Stephen W.; Psychiatry, School of MedicineRare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10−5) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10−15, ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.