- Browse by Author
Browsing by Author "Goodarzi, Mark O."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item A Reduced Pancreatic Polypeptide Response is Associated With New-onset Pancreatogenic Diabetes Versus Type 2 Diabetes(The Endocrine Society, 2023) Hart, Phil A.; Kudva, Yogish C.; Yadav, Dhiraj; Andersen, Dana K.; Li, Yisheng; Toledo, Frederico G. S.; Wang, Fuchenchu; Bellin, Melena D.; Bradley, David; Brand, Randall E.; Cusi, Kenneth; Fisher, William; Mather, Kieren; Park, Walter G.; Saeed, Zeb; Considine, Robert V.; Graham, Sarah C.; Rinaudo, Jo Ann; Serrano, Jose; Goodarzi, Mark O.; Medicine, School of MedicinePurpose: Pancreatogenic diabetes refers to diabetes mellitus (DM) that develops in the setting of a disease of the exocrine pancreas, including pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP). We sought to evaluate whether a blunted nutrient response of pancreatic polypeptide (PP) can differentiate these DM subtypes from type 2 DM (T2DM). Methods: Subjects with new-onset DM (<3 years' duration) in the setting of PDAC (PDAC-DM, n = 28), CP (CP-DM, n = 38), or T2DM (n = 99) completed a standardized mixed meal tolerance test, then serum PP concentrations were subsequently measured at a central laboratory. Two-way comparisons of PP concentrations between groups were performed using Wilcoxon rank-sum test and analysis of covariance while adjusting for age, sex, and body mass index. Results: The fasting PP concentration was lower in both the PDAC-DM and CP-DM groups than in the T2DM group (P = 0.03 and <0.01, respectively). The fold change in PP at 15 minutes following meal stimulation was significantly lower in the PDAC-DM (median, 1.869) and CP-DM (1.813) groups compared with T2DM (3.283; P < 0.01 for both comparisons). The area under the curve of PP concentration was significantly lower in both the PDAC-DM and CP-DM groups than in T2DM regardless of the interval used for calculation and remained significant after adjustments. Conclusions: Fasting PP concentrations and the response to meal stimulation are reduced in new-onset DM associated with PDAC or CP compared with T2DM. These findings support further investigations into the use of PP concentrations to characterize pancreatogenic DM and to understand the pathophysiological role in exocrine pancreatic diseases.Item Assessing the Pathophysiology of Hyperglycemia in the Diabetes RElated to Acute Pancreatitis and Its Mechanisms (DREAM) Study: From the Type 1 Diabetes in Acute Pancreatitis Consortium (T1DAPC)(Wolters Kluwer, 2022) Dungan, Kathleen M.; Hart, Phil A.; Andersen, Dana K.; Basina, Marina; Chinchilli, Vernon M.; Danielson, Kirstie K.; Evans-Molina, Carmella; Goodarzi, Mark O.; Greenbaum, Carla J.; Kalyani, Rita R.; Laughlin, Maren R.; Pichardo-Lowden, Ariana; Pratley, Richard E.; Serrano, Jose; Sims, Emily K.; Speake, Cate; Yadav, Dhiraj; Bellin, Melena D.; Toledo, Frederico G. S.; Type 1 Diabetes in Acute Pancreatitis Consortium; Medicine, School of MedicineObjectives: The metabolic abnormalities that lead to diabetes mellitus (DM) following an episode of acute pancreatitis (AP) have not been extensively studied. This manuscript describes the objectives, hypotheses, and methods of mechanistic studies of glucose metabolism that comprise secondary outcomes of the Diabetes RElated to Acute pancreatitis and its Mechanisms (DREAM) Study. Methods: Three months after an index episode of AP, participants without pre-existing DM will undergo baseline testing with an oral glucose tolerance test. Participants will be followed longitudinally in three sub-cohorts with distinct metabolic tests. In the first and largest subcohort, oral glucose tolerance tests will be repeated 12 months after AP and annually to assess changes in β-cell function, insulin secretion, and insulin sensitivity. In the second, mixed meal tolerance tests will be performed at 3 and 12 months, then annually, and following incident DM to assess incretin and pancreatic polypeptide responses. In the third, frequently-sampled intravenous glucose tolerance tests will be performed at 3 months and 12 months to assess the first-phase insulin response and more precisely measure β-cell function and insulin sensitivity. Conclusions: The DREAM study will comprehensively assess the metabolic and endocrine changes that precede and lead to the development of DM after AP.Item Diabetes Mellitus and Obesity as Risk Factors for Pancreatic Cancer(Elsevier, 2018-04) Eibl, Guido; Cruz-Monserrate, Zobeida; Korc, Murray; Petrov, Maxim S.; Goodarzi, Mark O.; Fisher, William E.; Habtezion, Aida; Lugea, Aurelia; Pandol, Stephen J.; Hart, Phil A.; Andersen, Dana K.; Medicine, School of MedicinePancreatic ductal adenocarcinoma (PDAC) is among the deadliest types of cancer. The worldwide estimates of its incidence and mortality in the general population are eight cases per 100,000 person-years and seven deaths per 100,000 person-years, and they are significantly higher in the United States than in the rest of the world. The incidence of this disease in the United States is more than 50,000 new cases in 2017. Indeed, total deaths due to PDAC are projected to increase dramatically to become the second leading cause of cancer-related deaths before 2030. Considering the failure to date to efficiently treat existing PDAC, increased effort should be undertaken to prevent this disease. A better understanding of the risk factors leading to PDAC development is of utmost importance to identify and formulate preventive strategies. Large epidemiologic and cohort studies have identified risk factors for the development of PDAC, including obesity and type 2 diabetes mellitus. This review highlights the current knowledge of obesity and type 2 diabetes as risk factors for PDAC development and progression, their interplay and underlying mechanisms, and the relation to diet. Research gaps and opportunities to address this deadly disease are also outlined.Item Impact of Rare and Common Genetic Variants on Diabetes Diagnosis by Hemoglobin A1c in Multi-Ancestry Cohorts: The Trans-Omics for Precision Medicine Program(Elsevier, 2019-09-26) Sarnowski, Chloé; Leong, Aaron; Raffield, Laura M.; Wu, Peitao; de Vries, Paul S.; DiCorpo, Daniel; Guo, Xiuqing; Xu, Huichun; Liu, Yongmei; Zheng, Xiuwen; Hu, Yao; Brody, Jennifer A.; Goodarzi, Mark O.; Hidalgo, Bertha A.; Highland, Heather M.; Jain, Deepti; Liu, Ching-Ti; Naik, Rakhi P.; O’Connell, Jeffrey R.; Perry, James A.; Porneala, Bianca C.; Selvin, Elizabeth; Wessel, Jennifer; Psaty, Bruce M.; Curran, Joanne E.; Peralta, Juan M.; Blangero, John; Kooperberg, Charles; Mathias, Rasika; Johnson, Andrew D.; Reiner, Alexander P.; Mitchell, Braxton D.; Cupples, L. Adrienne; Vasan, Ramachandran S.; Correa, Adolfo; Morrison, Alanna C.; Boerwinkle, Eric; Rotter, Jerome I.; Rich, Stephen S.; Manning, Alisa K.; Dupuis, Josée; Meigs, James B.; TOPMed Diabetes Working Group; TOPMed Hematology Working Group; TOPMed Hemostasis Working Group; National Heart, Lung, and Blood Institute TOPMed Consortium; Epidemiology, School of Public HealthHemoglobin A1c (HbA1c) is widely used to diagnose diabetes and assess glycemic control in individuals with diabetes. However, nonglycemic determinants, including genetic variation, may influence how accurately HbA1c reflects underlying glycemia. Analyzing the NHLBI Trans-Omics for Precision Medicine (TOPMed) sequence data in 10,338 individuals from five studies and four ancestries (6,158 Europeans, 3,123 African-Americans, 650 Hispanics, and 407 East Asians), we confirmed five regions associated with HbA1c (GCK in Europeans and African-Americans, HK1 in Europeans and Hispanics, FN3K and/or FN3KRP in Europeans, and G6PD in African-Americans and Hispanics) and we identified an African-ancestry-specific low-frequency variant (rs1039215 in HBG2 and HBE1, minor allele frequency (MAF) = 0.03). The most associated G6PD variant (rs1050828-T, p.Val98Met, MAF = 12% in African-Americans, MAF = 2% in Hispanics) lowered HbA1c (−0.88% in hemizygous males, −0.34% in heterozygous females) and explained 23% of HbA1c variance in African-Americans and 4% in Hispanics. Additionally, we identified a rare distinct G6PD coding variant (rs76723693, p.Leu353Pro, MAF = 0.5%; −0.98% in hemizygous males, −0.46% in heterozygous females) and detected significant association with HbA1c when aggregating rare missense variants in G6PD. We observed similar magnitude and direction of effects for rs1039215 (HBG2) and rs76723693 (G6PD) in the two largest TOPMed African American cohorts, and we replicated the rs76723693 association in the UK Biobank African-ancestry participants. These variants in G6PD and HBG2 were monomorphic in the European and Asian samples. African or Hispanic ancestry individuals carrying G6PD variants may be underdiagnosed for diabetes when screened with HbA1c. Thus, assessment of these variants should be considered for incorporation into precision medicine approaches for diabetes diagnosis.Item Integrated Physiology of the Exocrine and Endocrine Compartments in Pancreatic Diseases: Workshop Proceedings(Wolters Kluwer, 2022) Mastracci, Teresa L.; Apte, Minoti; Amundadottir, Laufey T.; Alvarsson, Alexandra; Artandi, Steven; Bellin, Melena D.; Bernal-Mizrachi, Ernesto; Caicedo, Alejandro; Campbell-Thompson, Martha; Cruz-Monserrate, Zobeida; El Ouaamari, Abdelfattah; Gaulton, Kyle J.; Geisz, Andrea; Goodarzi, Mark O.; Hara, Manami; Hull-Meichle, Rebecca L.; Kleger, Alexander; Klein, Alison P.; Kopp, Janel L.; Kulkarni, Rohit N.; Muzumdar, Mandar D.; Naren, Anjaparavanda P.; Oakes, Scott A.; Olesen, Søren S.; Phelps, Edward A.; Powers, Alvin C.; Stabler, Cherie L.; Tirkes, Temel; Whitcomb, David C.; Yadav, Dhiraj; Yong, Jing; Zaghloul, Norann A.; Sander, Maike; Pandol, Stephen J.; Biology, School of ScienceThe Integrated Physiology of the Exocrine and Endocrine Compartments in Pancreatic Diseases Workshop was a 1.5-day scientific conference at the National Institutes of Health (Bethesda, MD) that engaged clinical and basic science investigators interested in diseases of the pancreas. This report summarizes the workshop proceedings. The goal of the workshop was to forge connections and identify gaps in knowledge that could guide future research directions. Presentations were segregated into six major themes, including: (a) Pancreas Anatomy and Physiology; (b) Diabetes in the Setting of Exocrine Disease; (c) Metabolic Influences on the Exocrine Pancreas; (d) Genetic Drivers of Pancreatic Diseases; (e) Tools for Integrated Pancreatic Analysis; and (f) Implications of Exocrine-Endocrine Crosstalk. For each theme, there were multiple presentations followed by panel discussions on specific topics relevant to each area of research; these are summarized herein. Significantly, the discussions resulted in the identification of research gaps and opportunities for the field to address. In general, it was concluded that as a pancreas research community, we must more thoughtfully integrate our current knowledge of the normal physiology as well as the disease mechanisms that underlie endocrine and exocrine disorders so that there is a better understanding of the interplay between these compartments.Item Investigating Gene-Diet Interactions Impacting the Association Between Macronutrient Intake and Glycemic Traits(American Diabetes Association, 2023) Westerman, Kenneth E.; Walker, Maura E.; Gaynor, Sheila M.; Wessel, Jennifer; DiCorpo, Daniel; Ma, Jiantao; Alonso, Alvaro; Aslibekyan, Stella; Baldridge, Abigail S.; Bertoni, Alain G.; Biggs, Mary L.; Brody, Jennifer A.; Chen, Yii-Der Ida; Dupuis, Joseé; Goodarzi, Mark O.; Guo, Xiuqing; Hasbani, Natalie R.; Heath, Adam; Hidalgo, Bertha; Irvin, Marguerite R.; Johnson, W. Craig; Kalyani, Rita R.; Lange, Leslie; Lemaitre, Rozenn N.; Liu, Ching-Ti; Liu, Simin; Moon, Jee-Young; Nassir, Rami; Pankow, James S.; Pettinger, Mary; Raffield, Laura M.; Rasmussen-Torvik, Laura J.; Selvin, Elizabeth; Senn, Mackenzie K.; Shadyab, Aladdin H.; Smith, Albert V.; Smith, Nicholas L.; Steffen, Lyn; Talegakwar, Sameera; Taylor, Kent D.; de Vries, Paul S.; Wilson, James G.; Wood, Alexis C.; Yanek, Lisa R.; Yao, Jie; Zheng, Yinan; Boerwinkle, Eric; Morrison, Alanna C.; Fornage, Miriam; Russell, Tracy P.; Psaty, Bruce M.; Levy, Daniel; Heard-Costa, Nancy L.; Ramachandran, Vasan S.; Mathias, Rasika A.; Arnett, Donna K.; Kaplan, Robert; North, Kari E.; Correa, Adolfo; Carson, April; Rotter, Jerome I.; Rich, Stephen S.; Manson, JoAnn E.; Reiner, Alexander P.; Kooperberg, Charles; Florez, Jose C.; Meigs, James B.; Merino, Jordi; Tobias, Deirdre K.; Chen, Han; Manning, Alisa K.; Epidemiology, Richard M. Fairbanks School of Public HealthFew studies have demonstrated reproducible gene-diet interactions (GDIs) impacting metabolic disease risk factors, likely due in part to measurement error in dietary intake estimation and insufficient capture of rare genetic variation. We aimed to identify GDIs across the genetic frequency spectrum impacting the macronutrient-glycemia relationship in genetically and culturally diverse cohorts. We analyzed 33,187 participants free of diabetes from 10 National Heart, Lung, and Blood Institute Trans-Omics for Precision Medicine program cohorts with whole-genome sequencing, self-reported diet, and glycemic trait data. We fit cohort-specific, multivariable-adjusted linear mixed models for the effect of diet, modeled as an isocaloric substitution of carbohydrate for fat, and its interactions with common and rare variants genome-wide. In main effect meta-analyses, participants consuming more carbohydrate had modestly lower glycemic trait values (e.g., for glycated hemoglobin [HbA1c], -0.013% HbA1c/250 kcal substitution). In GDI meta-analyses, a common African ancestry-enriched variant (rs79762542) reached study-wide significance and replicated in the UK Biobank cohort, indicating a negative carbohydrate-HbA1c association among major allele homozygotes only. Simulations revealed that >150,000 samples may be necessary to identify similar macronutrient GDIs under realistic assumptions about effect size and measurement error. These results generate hypotheses for further exploration of modifiable metabolic disease risk in additional cohorts with African ancestry. Article highlights: We aimed to identify genetic modifiers of the dietary macronutrient-glycemia relationship using whole-genome sequence data from 10 Trans-Omics for Precision Medicine program cohorts. Substitution models indicated a modest reduction in glycemia associated with an increase in dietary carbohydrate at the expense of fat. Genome-wide interaction analysis identified one African ancestry-enriched variant near the FRAS1 gene that may interact with macronutrient intake to influence hemoglobin A1c. Simulation-based power calculations accounting for measurement error suggested that substantially larger sample sizes may be necessary to discover further gene-macronutrient interactions.Item Large-scale genomic analyses link reproductive ageing to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair(SpringerNature, 2015-11) Day, Felix R.; Ruth, Katherine S.; Thompson, Deborah J.; Lunetta, Kathryn L.; Pervjakova, Natalia; Chasman, Daniel I.; Stolk, Lisette; Finucane, Hilary K.; Sulem, Patrick; Bulik-Sullivan, Brendan; Esko, Tõnu; Johnson, Andrew D.; Elks, Cathy E.; Franceschini, Nora; He, Chunyan; Altmaier, Elisabeth; Brody, Jennifer A.; Franke, Lude L.; Huffman, Jennifer E.; Keller, Margaux F.; McArdle, Patrick F.; Nutile, Teresa; Porcu, Eleonora; Robino, Antonietta; Rose, Lynda M.; Schick, Ursula M.; Smith, Jennifer A.; Teumer, Alexander; Traglia, Michela; Vuckovic, Dragana; Yao, Jie; Zhao, Wei; Albrecht, Eva; Amin, Najaf; Corre, Tanguy; Hottenga, Jouke-Jan; Mangino, Massimo; Smith, Albert V.; Tanaka, Toshiko; Abecasis, Goncalo; Andrulis, Irene L.; Anton-Culver, Hoda; Antoniou, Antonis C.; Arndt, Volker; Arnold, Alice M.; Barbieri, Caterina; Beckmann, Matthias W.; Beeghly-Fadiel, Alicia; Benitez, Javier; Bernstein, Leslie; Bielinski, Suzette J.; Blomqvist, Carl; Boerwinkle, Eric; Bogdanova, Natalia V.; Bojesen, Stig E.; Bolla, Manjeet K.; Borresen-Dale, Anne-Lise; Boutin, Thibaud S.; Brauch, Hiltrud; Brenner, Hermann; Brüning, Thomas; Burwinkel, Barbara; Campbell, Archie; Campbell, Harry; Chanock, Stephen J.; Chapman, J. Ross; Chen, Yii-Der Ida; Chenevix-Trench, Georgia; Couch, Fergus J.; Coviello, Andrea D.; Cox, Angela; Czene, Kamila; Darabi, Hatef; De Vivo, Immaculata; Demerath, Ellen W.; Dennis, Joe; Devilee, Peter; Dörk, Thilo; dos-Santos-Silva, Isabel; Dunning, Alison M.; Eicher, John D.; Fasching, Peter A.; Faul, Jessica D.; Figueroa, Jonine; Flesch-Janys, Dieter; Gandin, Ilaria; Garcia, Melissa E.; García-Closas, Montserrat; Giles, Graham G.; Girotto, Giorgia G.; Goldberg, Mark S.; González-Neira, Anna; Goodarzi, Mark O.; Grove, Megan L.; Gudbjartsson, Daniel F.; Guénel, Pascal; Guo, Xiuqing; Haiman, Christopher A.; Hall, Per; Hamann, Ute; Henderson, Brian E.; Hocking, Lynne J.; Hofman, Albert; Homuth, Georg; Hooning, Maartje J.; Hopper, John L.; Hu, Frank B.; Huang, Jinyan; Humphreys, Keith; Hunter, David J.; Jakubowska, Anna; Jones, Samuel E.; Kabisch, Maria; Karasia, David; Knight, Julia A.; Kolcic, Ivana; Kooperberg, Charles; Kosma, Veli-Matti; Kriebel, Jennifer; Kristensen, Vessela; Lambrechts, Diether; Langenberg, Claudia; Li, Jingmei; Li, Xin; Lindström, Sara; Liu, Yongmei; Luan, Jian’an; Lubinski, Jan; Mägi, Reedik; Mannermaa, Arto; Manz, Judith; Margolin, Sara; Marten, Jonathan; Martin, Nicholas G.; Masciullo, Corrado; Meindl, Alfons; Michailidou, Kyriaki; Mihailov, Evelin; Milani, Lili; Milne, Roger L.; Müller-Nurasyid, Martina; Nalls, Michael; Neale, Ben M.; Nevanlinna, Heli; Neven, Patrick; Newman, Anne B.; Nordestgaard, Børge G.; Olson, Janet E.; Padmanabhan, Sandosh; Peterlongo, Paolo; Peters, Ulrike; Petersmann, Astrid; Peto, Julian; Pharoah, Paul D.P.; Pirastu, Nicola N.; Pirie, Ailith; Pistis, Giorgio; Polasek, Ozren; Porteous, David; Psaty, Bruce M.; Pylkäs, Katri; Radice, Paolo; Raffel, Leslie J.; Rivadeneira, Fernando; Rudan, Igor; Rudolph, Anja; Anja, Daniela; Sala, Cinzia F.; Sanna, Serena; Sawyer, Elinor J.; Schlessinger, David; Schmidt, Marjanka K.; Schmidt, Frank; Schmutzler, Rita K.; Schoemaker, Minouk J.; Scott, Robert A.; Seynaeve, Caroline M.; Simard, Jacques; Sorice, Rossella; Southey, Melissa C.; Stöckl, Doris; Strauch, Konstantin; Swerdlow, Anthony; Taylor, Kent D.; Thorsteinsdottir, Unnur; Toland, Amanda E.; Tomlinson, Ian; Truong, Thérèse; Tryggvadottir, Laufey; Turner, Stephen T.; Vozzi, Diego; Wang, Qin; Wellons, Melissa; Willemsen, Gonneke; Wilson, James F.; Winqvist, Robert; Wolffenbuttel, Bruce B.H.R.; Wright, Alan F.; Yannoukakos, Drakoulis; Zemunik, Tatijana; Zheng, Wei; Zygmunt, Marek; Bergmann, Sven; Boomsma, Dorret I.; Buring, Julie E.; Ferrucci, Luigi; Montgomery, Grant W.; Gudnason, Vilmundur; Spector, Tim D.; van Duijn, Cornelia M; Alizadeh, Behrooz Z.; Ciullo, Marina; Crisponi, Laura; Easton, Douglas F.; Gasparini, Paolo P.; Gieger, Christian; Harris, Tamara B.; Hayward, Caroline; Kardia, Sharon L.R.; Kraft, Peter; McKnight, Barbara; Metspalu, Andres; Morrison, Alanna C.; Reiner, Alex P.; Ridker, Paul M.; Rotter, Jerome I.; Toniolo, Daniela; Uitterlinden, André G.; Ulivi, Sheila; Völzke, Henry; Wareham, Nicholas J.; Weir, David R.; Yerges-Armstrong, Laura M.; Price, Alkes L.; Stefansson, Kari; Visser, Jenny A.; Ong, Ken K.; Chang-Claude, Jenny; Murabito, Joanne M.; Perry, John R.B.; Murray, Anna; Department of Epidemiology, Richard M. Fairbanks School of Public HealthMenopause timing has a substantial impact on infertility and risk of disease, including breast cancer, but the underlying mechanisms are poorly understood. We report a dual strategy in ∼70,000 women to identify common and low-frequency protein-coding variation associated with age at natural menopause (ANM). We identified 44 regions with common variants, including two regions harboring additional rare missense alleles of large effect. We found enrichment of signals in or near genes involved in delayed puberty, highlighting the first molecular links between the onset and end of reproductive lifespan. Pathway analyses identified major association with DNA damage response (DDR) genes, including the first common coding variant in BRCA1 associated with any complex trait. Mendelian randomization analyses supported a causal effect of later ANM on breast cancer risk (∼6% increase in risk per year; P = 3 × 10(-14)), likely mediated by prolonged sex hormone exposure rather than DDR mechanisms.Item Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility(Nature Publishing Group, 2015-01-29) Wessel, Jennifer; Chu, Audrey Y.; Willems, Sara M.; Wang, Shuai; Yaghootkar, Hanieh; Brody, Jennifer A.; Dauriz, Marco; Hivert, Marie-France; Raghavan, Sridharan; Lipovich, Leonard; Hidalgo, Bertha; Fox, Keolu; Huffman, Jennifer E.; An, Ping; Lu, Yingchang; Rasmussen-Torvik, Laura J.; Grarup, Niels; Ehm, Margaret G.; Li, Li; Baldridge, Abigail S.; Stančáková, Alena; Abrol, Ravinder; Besse, Céline; Boland, Anne; Bork-Jensen, Jette; Fornage, Myriam; Freitag, Daniel F.; Garcia, Melissa E.; Guo, Xiuqing; Hara, Kazuo; Isaacs, Aaron; Jakobsdottir, Johanna; Lange, Leslie A.; Layton, Jill C.; Li, Man; Hua Zhao, Jing; Meidtner, Karina; Morrison, Alanna C.; Nalls, Mike A.; Peters, Marjolein J.; Sabater-Lleal, Maria; Schurmann, Claudia; Silveira, Angela; Smith, Albert V.; Southam, Lorraine; Stoiber, Marcus H.; Strawbridge, Rona J.; Taylor, Kent D.; Varga, Tibor V.; Allin, Kristine H.; Amin, Najaf; Aponte, Jennifer L.; Aung, Tin; Barbieri, Caterina; Bihlmeyer, Nathan A.; Boehnke, Michael; Bombieri, Cristina; Bowden, Donald W.; Burns, Sean M.; Chen, Yuning; Chen, Yii-DerI; Cheng, Ching-Yu; Correa, Adolfo; Czajkowski, Jacek; Dehghan, Abbas; Ehret, Georg B.; Eiriksdottir, Gudny; Escher, Stefan A.; Farmaki, Aliki-Eleni; Frånberg, Mattias; Gambaro, Giovanni; Giulianini, Franco; Goddard, William A.; Goel, Anuj; Gottesman, Omri; Grove, Megan L.; Gustafsson, Stefan; Hai, Yang; Hallmans, Göran; Heo, Jiyoung; Hoffmann, Per; Ikram, Mohammad K.; Jensen, Richard A.; Jørgensen, Marit E.; Jørgensen, Torben; Karaleftheri, Maria; Khor, Chiea C.; Kirkpatrick, Andrea; Kraja, Aldi T.; Kuusisto, Johanna; Lange, Ethan M.; Lee, I. T.; Lee, Wen-Jane; Leong, Aaron; Liao, Jiemin; Liu, Chunyu; Liu, Yongmei; Lindgren, Cecilia M.; Linneberg, Allan; Malerba, Giovanni; Mamakou, Vasiliki; Marouli, Eirini; Maruthur, Nisa M.; Matchan, Angela; McKean-Cowdin, Roberta; McLeod, Olga; Metcalf, Ginger A.; Mohlke, Karen L.; Muzny, Donna M.; Ntalla, Ioanna; Palmer, Nicholette D.; Pasko, Dorota; Peter, Andreas; Rayner, Nigel W.; Renström, Frida; Rice, Ken; Sala, Cinzia F.; Sennblad, Bengt; Serafetinidis, Ioannis; Smith, Jennifer A.; Soranzo, Nicole; Speliotes, Elizabeth K.; Stahl, Eli A.; Stirrups, Kathleen; Tentolouris, Nikos; Thanopoulou, Anastasia; Torres, Mina; Traglia, Michela; Tsafantakis, Emmanouil; Javad, Sundas; Yanek, Lisa R.; Zengini, Eleni; Becker, Diane M.; Bis, Joshua C.; Brown, James B.; Adrienne Cupples, L.; Hansen, Torben; Ingelsson, Erik; Karter, Andrew J.; Lorenzo, Carlos; Mathias, Rasika A.; Norris, Jill M.; Peloso, Gina M.; Sheu, Wayne H.-H.; Toniolo, Daniela; Vaidya, Dhananjay; Varma, Rohit; Wagenknecht, Lynne E.; Boeing, Heiner; Bottinger, Erwin P.; Dedoussis, George; Deloukas, Panos; Ferrannini, Ele; Franco, Oscar H.; Franks, Paul W.; Gibbs, Richard A.; Gudnason, Vilmundur; Hamsten, Anders; Harris, Tamara B.; Hattersley, Andrew T.; Hayward, Caroline; Hofman, Albert; Jansson, Jan-Håkan; Langenberg, Claudia; Launer, Lenore J.; Levy, Daniel; Oostra, Ben A.; O'Donnell, Christopher J.; O'Rahilly, Stephen; Padmanabhan, Sandosh; Pankow, James S.; Polasek, Ozren; Province, Michael A.; Rich, Stephen S.; Ridker, Paul M.; Rudan, Igor; Schulze, Matthias B.; Smith, Blair H.; Uitterlinden, André G.; Walker, Mark; Watkins, Hugh; Wong, Tien Y.; Zeggini, Eleftheria; Laakso, Markku; Borecki, Ingrid B.; Chasman, Daniel I.; Pedersen, Oluf; Psaty, Bruce M.; Shyong Tai, E.; van Duijn, Cornelia M.; Wareham, Nicholas J.; Waterworth, Dawn M.; Boerwinkle, Eric; Linda Kao, W. H.; Florez, Jose C.; Loos, Ruth J. F.; Wilson, James G.; Frayling, Timothy M.; Siscovick, David S.; Dupuis, Josée; Rotter, Jerome I.; Meigs, James B.; Scott, Robert A.; Goodarzi, Mark O.; Department of Epidemiology, Richard M. Fairbanks School of Public HealthFasting glucose and insulin are intermediate traits for type 2 diabetes. Here we explore the role of coding variation on these traits by analysis of variants on the HumanExome BeadChip in 60,564 non-diabetic individuals and in 16,491 T2D cases and 81,877 controls. We identify a novel association of a low-frequency nonsynonymous SNV in GLP1R (A316T; rs10305492; MAF=1.4%) with lower FG (β=−0.09±0.01 mmol l−1, P=3.4 × 10−12), T2D risk (OR[95%CI]=0.86[0.76–0.96], P=0.010), early insulin secretion (β=−0.07±0.035 pmolinsulin mmolglucose−1, P=0.048), but higher 2-h glucose (β=0.16±0.05 mmol l−1, P=4.3 × 10−4). We identify a gene-based association with FG at G6PC2 (pSKAT=6.8 × 10−6) driven by four rare protein-coding SNVs (H177Y, Y207S, R283X and S324P). We identify rs651007 (MAF=20%) in the first intron of ABO at the putative promoter of an antisense lncRNA, associating with higher FG (β=0.02±0.004 mmol l−1, P=1.3 × 10−8). Our approach identifies novel coding variant associations and extends the allelic spectrum of variation underlying diabetes-related quantitative traits and T2D susceptibility.Item Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine(Springer Nature, 2023) Tobias, Deirdre K.; Merino, Jordi; Ahmad, Abrar; Aiken, Catherine; Benham, Jamie L.; Bodhini, Dhanasekaran; Clark, Amy L.; Colclough, Kevin; Corcoy, Rosa; Cromer, Sara J.; Duan, Daisy; Felton, Jamie L.; Francis, Ellen C.; Gillard, Pieter; Gingras, Véronique; Gaillard, Romy; Haider, Eram; Hughes, Alice; Ikle, Jennifer M.; Jacobsen, Laura M.; Kahkoska, Anna R.; Kettunen, Jarno L. T.; Kreienkamp, Raymond J.; Lim, Lee-Ling; Männistö, Jonna M. E.; Massey, Robert; Mclennan, Niamh-Maire; Miller, Rachel G.; Morieri, Mario Luca; Most, Jasper; Naylor, Rochelle N.; Ozkan, Bige; Patel, Kashyap Amratlal; Pilla, Scott J.; Prystupa, Katsiaryna; Raghavan, Sridharan; Rooney, Mary R.; Schön, Martin; Semnani-Azad, Zhila; Sevilla-Gonzalez, Magdalena; Svalastoga, Pernille; Takele, Wubet Worku; Tam, Claudia Ha-Ting; Thuesen, Anne Cathrine B.; Tosur, Mustafa; Wallace, Amelia S.; Wang, Caroline C.; Wong, Jessie J.; Yamamoto, Jennifer M.; Young, Katherine; Amouyal, Chloé; Andersen, Mette K.; Bonham, Maxine P.; Chen, Mingling; Cheng, Feifei; Chikowore, Tinashe; Chivers, Sian C.; Clemmensen, Christoffer; Dabelea, Dana; Dawed, Adem Y.; Deutsch, Aaron J.; Dickens, Laura T.; DiMeglio, Linda A.; Dudenhöffer-Pfeifer, Monika; Evans-Molina, Carmella; Fernández-Balsells, María Mercè; Fitipaldi, Hugo; Fitzpatrick, Stephanie L.; Gitelman, Stephen E.; Goodarzi, Mark O.; Grieger, Jessica A.; Guasch-Ferré, Marta; Habibi, Nahal; Hansen, Torben; Huang, Chuiguo; Harris-Kawano, Arianna; Ismail, Heba M.; Hoag, Benjamin; Johnson, Randi K.; Jones, Angus G.; Koivula, Robert W.; Leong, Aaron; Leung, Gloria K. W.; Libman, Ingrid M.; Liu, Kai; Long, S. Alice; Lowe, William L., Jr.; Morton, Robert W.; Motala, Ayesha A.; Onengut-Gumuscu, Suna; Pankow, James S.; Pathirana, Maleesa; Pazmino, Sofia; Perez, Dianna; Petrie, John R.; Powe, Camille E.; Quinteros, Alejandra; Jain, Rashmi; Ray, Debashree; Ried-Larsen, Mathias; Saeed, Zeb; Santhakumar, Vanessa; Kanbour, Sarah; Sarkar, Sudipa; Monaco, Gabriela S. F.; Scholtens, Denise M.; Selvin, Elizabeth; Sheu, Wayne Huey-Herng; Speake, Cate; Stanislawski, Maggie A.; Steenackers, Nele; Steck, Andrea K.; Stefan, Norbert; Støy, Julie; Taylor, Rachael; Tye, Sok Cin; Ukke, Gebresilasea Gendisha; Urazbayeva, Marzhan; Van der Schueren, Bart; Vatier, Camille; Wentworth, John M.; Hannah, Wesley; White, Sara L.; Yu, Gechang; Zhang, Yingchai; Zhou, Shao J.; Beltrand, Jacques; Polak, Michel; Aukrust, Ingvild; de Franco, Elisa; Flanagan, Sarah E.; Maloney, Kristin A.; McGovern, Andrew; Molnes, Janne; Nakabuye, Mariam; Njølstad, Pål Rasmus; Pomares-Millan, Hugo; Provenzano, Michele; Saint-Martin, Cécile; Zhang, Cuilin; Zhu, Yeyi; Auh, Sungyoung; de Souza, Russell; Fawcett, Andrea J.; Gruber, Chandra; Mekonnen, Eskedar Getie; Mixter, Emily; Sherifali, Diana; Eckel, Robert H.; Nolan, John J.; Philipson, Louis H.; Brown, Rebecca J.; Billings, Liana K.; Boyle, Kristen; Costacou, Tina; Dennis, John M.; Florez, Jose C.; Gloyn, Anna L.; Gomez, Maria F.; Gottlieb, Peter A.; Greeley, Siri Atma W.; Griffin, Kurt; Hattersley, Andrew T.; Hirsch, Irl B.; Hivert, Marie-France; Hood, Korey K.; Josefson, Jami L.; Kwak, Soo Heon; Laffel, Lori M.; Lim, Siew S.; Loos, Ruth J. F.; Ma, Ronald C. W.; Mathieu, Chantal; Mathioudakis, Nestoras; Meigs, James B.; Misra, Shivani; Mohan, Viswanathan; Murphy, Rinki; Oram, Richard; Owen, Katharine R.; Ozanne, Susan E.; Pearson, Ewan R.; Perng, Wei; Pollin, Toni I.; Pop-Busui, Rodica; Pratley, Richard E.; Redman, Leanne M.; Redondo, Maria J.; Reynolds, Rebecca M.; Semple, Robert K.; Sherr, Jennifer L.; Sims, Emily K.; Sweeting, Arianne; Tuomi, Tiinamaija; Udler, Miriam S.; Vesco, Kimberly K.; Vilsbøll, Tina; Wagner, Robert; Rich, Stephen S.; Franks, Paul W.; Pediatrics, School of MedicinePrecision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.Item Whole Genome Sequence Association Analysis of Fasting Glucose and Fasting Insulin Levels in Diverse Cohorts from the NHLBI TOPMed Program(Springer Nature, 2022-07-28) DiCorpo, Daniel; Gaynor, Sheila M.; Russell, Emily M.; Westerman, Kenneth E.; Raffield, Laura M.; Majarian, Timothy D.; Wu, Peitao; Sarnowski, Chloé; Highland, Heather M.; Jackson, Anne; Hasbani, Natalie R.; de Vries, Paul S.; Brody, Jennifer A.; Hidalgo, Bertha; Guo, Xiuqing; Perry, James A.; O’Connell, Jeffrey R.; Lent, Samantha; Montasser, May E.; Cade, Brian E.; Jain, Deepti; Wang, Heming; D’Oliveira Albanus, Ricardo; Varshney, Arushi; Yanek, Lisa R.; Lange, Leslie; Palmer, Nicholette D.; Almeida, Marcio; Peralta, Juan M.; Aslibekyan, Stella; Baldridge, Abigail S.; Bertoni, Alain G.; Bielak, Lawrence F.; Chen, Chung-Shiuan; Chen, Yii-Der Ida; Choi, Won Jung; Goodarzi, Mark O.; Floyd, James S.; Irvin, Marguerite R.; Kalyani, Rita R.; Kelly, Tanika N.; Lee, Seonwook; Liu, Ching-Ti; Loesch, Douglas; Manson, JoAnn E.; Minster, Ryan L.; Naseri, Take; Pankow, James S.; Rasmussen-Torvik, Laura J.; Reiner, Alexander P.; Reupena, Muagututi’a Sefuiva; Selvin, Elizabeth; Smith, Jennifer A.; Weeks, Daniel E.; Xu, Huichun; Yao, Jie; Zhao, Wei; Parker, Stephen; Alonso, Alvaro; Arnett, Donna K.; Blangero, John; Boerwinkle, Eric; Correa, Adolfo; Cupples, L. Adrienne; Curran, Joanne E.; Duggirala, Ravindranath; He, Jiang; Heckbert, Susan R.; Kardia, Sharon L.R.; Kim, Ryan W.; Kooperberg, Charles; Liu, Simin; Mathias, Rasika A.; McGarvey, Stephen T.; Mitchell, Braxton D.; Morrison, Alanna C.; Peyser, Patricia A.; Psaty, Bruce M.; Redline, Susan; Shuldiner, Alan R.; Taylor, Kent D.; Vasan, Ramachandran S.; Viaud-Martinez, Karine A.; Florez, Jose C.; Wilson, James G.; Sladek, Robert; Rich, Stephen S.; Rotter, Jerome I.; Lin, Xihong; Dupuis, Josée; Meigs, James B.; Wessel, Jennifer; Manning, Alisa K.; Epidemiology, School of Public HealthThe genetic determinants of fasting glucose (FG) and fasting insulin (FI) have been studied mostly through genome arrays, resulting in over 100 associated variants. We extended this work with high-coverage whole genome sequencing analyses from fifteen cohorts in NHLBI's Trans-Omics for Precision Medicine (TOPMed) program. Over 23,000 non-diabetic individuals from five race-ethnicities/populations (African, Asian, European, Hispanic and Samoan) were included. Eight variants were significantly associated with FG or FI across previously identified regions MTNR1B, G6PC2, GCK, GCKR and FOXA2. We additionally characterize suggestive associations with FG or FI near previously identified SLC30A8, TCF7L2, and ADCY5 regions as well as APOB, PTPRT, and ROBO1. Functional annotation resources including the Diabetes Epigenome Atlas were compiled for each signal (chromatin states, annotation principal components, and others) to elucidate variant-to-function hypotheses. We provide a catalog of nucleotide-resolution genomic variation spanning intergenic and intronic regions creating a foundation for future sequencing-based investigations of glycemic traits.