- Browse by Author
Browsing by Author "Glorieux, Francis H."
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Burosumab versus conventional therapy in children with X-linked hypophosphataemia: a randomised, active-controlled, open-label, phase 3 trial(Elsevier, 2019-06-15) Imel, Erik A.; Glorieux, Francis H.; Whyte, Michael P.; Munns, Craig F.; Ward, Leanne M.; Nilsson, Ola; Simmons, Jill H.; Padidela, Raja; Namba, Noriyuki; Cheong, Hae Il; Pitukcheewanont, Pisit; Sochett, Etienne; Högler, Wolfgang; Muroya, Koji; Tanaka, Hiroyuki; Gottesman, Gary S.; Biggin, Andrew; Perwad, Farzana; Mao, Meng; Chen, Chao-Yin; Skrinar, Alison; Martin, Javier San; Portale, Anthony A.; Medicine, School of MedicineBackground X-linked hypophosphatemia in children is characterized by elevated serum FGF23, hypophosphatemia, rickets, lower extremity bowing, and growth impairment. We compared the efficacy and safety of continuing conventional therapy, consisting of oral phosphate and active vitamin D, versus switching to burosumab, a fully human monoclonal antibody against FGF23, in pediatric X-linked hypophosphatemia. Methods In this randomised, active-controlled, open-label, phase 3 trial at 16 clinical sites, we enrolled children with X-linked hypophosphataemia aged 1–12 years. Key eligibility criteria were a total Thacher rickets severity score of at least 2·0, fasting serum phosphorus lower than 0·97 mmol/L (3·0 mg/dL), confirmed PHEX (phosphate-regulating endopeptidase homolog, X-linked) mutation or variant of unknown significance in the patient or a family member with appropriate X-linked dominant inheritance, and receipt of conventional therapy for at least 6 consecutive months for children younger than 3 years or at least 12 consecutive months for children older than 3 years. Eligible patients were randomly assigned (1:1) to receive either subcutaneous burosumab starting at 0·8 mg/kg every 2 weeks (burosumab group) or conventional therapy prescribed by investigators (conventional therapy group). Both interventions lasted 64 weeks. The primary endpoint was change in rickets severity at week 40, assessed by the Radiographic Global Impression of Change global score. All patients who received at least one dose of treatment were included in the primary and safety analyses. The trial is registered with ClinicalTrials.gov, number NCT02915705. Findings Recruitment took place between Aug 3, 2016, and May 8, 2017. Of 122 patients assessed, 61 were enrolled. Of these, 32 (18 girls, 14 boys) were randomly assigned to continue receiving conventional therapy and 29 (16 girls, 13 boys) to receive burosumab. For the primary endpoint at week 40, patients in the burosumab group had significantly greater improvement in Radiographic Global Impression of Change global score than did patients in the conventional therapy group (least squares mean +1·9 [SE 0·1] with burosumab vs +0·8 [0·1] with conventional therapy; difference 1·1, 95% CI 0·8–1·5; p<0·0001). Treatment-emergent adverse events considered possibly, probably, or definitely related to treatment by the investigator occurred more frequently with burosumab (17 [59%] of 29 patients in the burosumab group vs seven [22%] of 32 patients in the conventional therapy group). Three serious adverse events occurred in each group, all considered unrelated to treatment and resolved. Interpretation Significantly greater clinical improvements were shown in rickets severity, growth, and biochemistries among children with X-linked hypophosphataemia treated with burosumab compared with those continuing conventional therapy. Funding Ultragenyx Pharmaceutical Inc. and Kyowa Kirin InternationalItem Burosumab vs conventional therapy in children with X-linked hypophosphatemia: results of the open-label, phase 3 extension period(Oxford University Press, 2024-01-04) Ward, Leanne M.; Högler, Wolfgang; Glorieux, Francis H.; Portale, Anthony A.; Whyte, Michael P.; Munns, Craig F.; Nilsson, Ola; Simmons, Jill H.; Padidela, Raja; Namba, Noriyuki; Cheong, Hae, Il; Sochett, Etienne; Muroya, Koji; Tanaka, Hiroyuki; Pitukcheewanont, Pisit; Gottesman, Gary S.; Biggin, Andrew; Perwad, Farzana; Chen, Angel; Merritt, John Lawrence, II; Imel, Erik A.; Medicine, School of MedicineIn a randomized, open-label phase 3 study of 61 children aged 1-12 years old with X-linked hypophosphatemia (XLH) previously treated with conventional therapy, changing to burosumab every 2 weeks (Q2W) for 64 weeks improved the phosphate metabolism, radiographic rickets, and growth compared with conventional therapy. In this open-label extension period (weeks 64-88), 21 children continued burosumab Q2W at the previous dose or crossed over from conventional therapy to burosumab starting at 0.8 mg/kg Q2W with continued clinical radiographic assessments through week 88. Efficacy endpoints and safety observations were summarized descriptively for both groups (burosumab continuation, n = 6; crossover, n = 15). At week 88 compared with baseline, improvements in the following outcomes were observed in the burosumab continuation and crossover groups, respectively: mean (SD) RGI-C rickets total score (primary outcome), +2.11 (0.27) and +1.89 (0.35); mean (SD) RGI-C lower limb deformity score, +1.61 (0.91) and +0.73 (0.82); and mean (SD) height Z-score + 0.41 (0.50) and +0.08 (0.34). Phosphate metabolism normalized rapidly in the crossover group and persisted in the continuation group. Mean (SD) serum alkaline phosphatase decreased from 169% (43%) of the upper limit of normal (ULN) at baseline to 126% (51%) at week 88 in the continuation group and from 157% (33%) of the ULN at baseline to 111% (23%) at week 88 in the crossover group. During the extension period, treatment-emergent adverse events (AEs) were reported in all 6 children in the burosumab continuation group and 14/15 children in the crossover group. The AE profiles in the randomized and extension periods were similar, with no new safety signals identified. Improvements from baseline in radiographic rickets continued in the extension period among children with XLH who remained on burosumab. Children who crossed over from conventional therapy to burosumab demonstrated a rapid improvement in phosphate metabolism and improved rickets healing over the ensuing 22 weeks.Item Burosumab vs Phosphate/Active Vitamin D in Pediatric X-Linked Hypophosphatemia: A Subgroup Analysis by Dose Level(The Endocrine Society, 2023) Imel, Erik A.; Glorieux, Francis H.; Whyte, Michael P.; Portale, Anthony A.; Munns, Craig F.; Nilsson, Ola; Simmons, Jill H.; Padidela, Raja; Namba, Noriyuki; Cheong, Hae Il; Pitukcheewanont, Pisit; Sochett, Etienne; Högler, Wolfgang; Muroya, Koji; Tanaka, Hiroyuki; Gottesman, Gary S.; Biggin, Andrew; Perwad, Farzana; Chen, Angel; Scott Roberts, Mary; Ward, Leanne M.; Medicine, School of MedicineContext: In an open-label, randomized, controlled, phase 3 trial in 61 children aged 1 to 12 years with X-linked hypophosphatemia (XLH), burosumab improved rickets vs continuing conventional therapy with active vitamin D and phosphate. Objective: We conducted an analysis to determine whether skeletal responses differed when switching to burosumab vs continuing higher or lower doses of conventional therapy. Methods: Conventional therapy dose groups were defined as higher-dose phosphate [greater than 40 mg/kg] (HPi), lower-dose phosphate [40 mg/kg or less] (LPi), higher-dose alfacalcidol [greater than 60 ng/kg] or calcitriol [greater than 30 ng/kg] (HD), and lower-dose alfacalcidol [60 ng/kg or less] or calcitriol [30 ng/kg or less] (LD). Results: At week 64, the Radiographic Global Impression of Change (RGI-C) for rickets was higher (better) in children randomly assigned to burosumab vs conventional therapy for all prebaseline dose groups: HPi (+1.72 vs +0.67), LPi (+2.14 vs +1.08), HD (+1.90 vs +0.94), LD (+2.11 vs +1.06). At week 64, the RGI-C for rickets was also higher in children randomly assigned to burosumab (+2.06) vs conventional therapy for all on-study dose groups: HPi (+1.03), LPi (+1.05), HD (+1.45), LD (+0.72). Serum alkaline phosphatase (ALP) also decreased in the burosumab-treated patients more than in the conventional therapy group, regardless of on-study phosphate and active vitamin D doses. Conclusion: Prior phosphate or active vitamin D doses did not influence treatment response after switching to burosumab among children with XLH and active radiographic rickets. Switching from conventional therapy to burosumab improved rickets and serum ALP more than continuing either higher or lower doses of phosphate or active vitamin D.Item Effect of Burosumab Compared With Conventional Therapy on Younger vs Older Children With X-linked Hypophosphatemia(Endocrine Society, 2022) Ward, Leanne M.; Glorieux, Francis H.; Whyte, Michael P.; Munns, Craig F.; Portale, Anthony A.; Högler, Wolfgang; Simmons, Jill H.; Gottesman, Gary S.; Padidela, Raja; Namba, Noriyuki; Cheong, Hae Il; Nilsson, Ola; Mao, Meng; Chen, Angel; Skrinar, Alison; Scott Roberts, Mary; Imel, Erik A.; Medicine, School of MedicineContext: Younger age at treatment onset with conventional therapy (phosphate salts and active vitamin D; Pi/D) is associated with improved growth and skeletal outcomes in children with X-linked hypophosphatemia (XLH). The effect of age on burosumab efficacy and safety in XLH is unknown. Objective: This work aimed to explore the efficacy and safety of burosumab vs Pi/D in younger (< 5 years) and older (5-12 years) children with XLH. Methods: This post hoc analysis of a 64-week, open-label, randomized controlled study took place at 16 academic centers. Sixty-one children aged 1 to 12 years with XLH (younger, n = 26; older, n = 35) participated. Children received burosumab starting at 0.8 mg/kg every 2 weeks (younger, n = 14; older, n = 15) or continued Pi/D individually titrated per recommended guidelines (younger, n = 12; older, n = 20). The main outcome measure included the least squares means difference (LSMD) in Radiographic Global Impression of Change (RGI-C) rickets total score from baseline to week 64. Results: The LSMD in outcomes through 64 weeks on burosumab vs conventional therapy by age group were as follows: RGI-C rickets total score (younger, +0.90; older, +1.07), total Rickets Severity Score (younger, -0.86; older, -1.44), RGI-C lower limb deformity score (younger, +1.02; older, +0.91), recumbent length or standing height Z-score (younger, +0.20; older, +0.09), and serum alkaline phosphatase (ALP) (younger, -31.15% of upper normal limit [ULN]; older, -52.11% of ULN). On burosumab, dental abscesses were not reported in younger children but were in 53% of older children. Conclusion: Burosumab appears to improve outcomes both in younger and older children with XLH, including rickets, lower limb deformities, growth, and ALP, compared with Pi/D.Item Effect of four monthly doses of a human monoclonal anti-FGF23 antibody (KRN23) on quality of life in X-linked hypophosphatemia(Elsevier, 2016-12) Ruppe, Mary D.; Zhang, Xiaoping; Imel, Erik A.; Weber, Thomas J.; Klausner, Mark A.; Ito, Takahiro; Vergeire, Maria; Humphrey, Jeffrey S.; Glorieux, Francis H.; Portale, Anthony A.; Insogna, Karl; Peacock, Munro; Carpenter, Thomas O.; Department of Medicine, IU School of MedicineX-linked hypophosphatemia (XLH) is characterized by lower extremity deformities that lead to bone and/or joint pain that result from decreased renal tubular reabsorption leading to hypophosphatemia caused by elevated levels of fibroblast growth factor 23 (FGF23). Objective Validate the use of SF-36v2 Health Survey (SF-36v2) and the Western Ontario and McMaster Osteoarthritis Index (WOMAC) to measure previously unstudied health-related quality of life (HRQoL) in XLH patients and determine the change in HRQoL before and after treatment with KRN23, a human monoclonal anti-FGF23 antibody. Methods Twenty-eight adult outpatients with XLH received up to four doses of KRN23 administered subcutaneously every 28 days. General HRQoL was measured with the SF-36v2 and condition-related HRQoL with the WOMAC at baseline and study endpoint as a secondary outcome of a Phase 1/2, open-label, multicenter, dose-escalation trial. Results Testing for scale discriminant validity and convergent-divergent validity supported the use of these scales in the assessment of HRQoL in XLH. Both instruments indicated impairment of physical function at baseline with all mean scores showing a trend to improved health at study endpoint compared to baseline. When corrected for multiple comparisons, the score for Role Limitations due to physical health on the SF-36v2 which measures the patient's perception of their own chronic functional impairments due to poor physical health remained significantly improved (P < 0.05), increasing to the mean score of US adults. For the WOMAC, Physical Functioning and Stiffness scores were significantly improved (P < 0.05). Conclusion KRN23 administration was associated with significantly improved patient perception of their Physical Functioning and Stiffness due to their disease. This study demonstrates that the SF-36v2 and WOMAC are valid tools for assessing HRQoL in XLH.Item Patient-Reported Outcomes from a Randomized, Active-Controlled, Open-Label, Phase 3 Trial of Burosumab Versus Conventional Therapy in Children with X-Linked Hypophosphatemia(Springer, 2021-05) Padidela, Raja; Whyte, Michael P.; Glorieux, Francis H.; Munns, Craig F.; Ward, Leanne M.; Nilsson, Ola; Portale, Anthony A.; Simmons, Jill H.; Namba, Noriyuki; Cheong, Hae Il; Pitukcheewanont, Pisit; Sochett, Etienne; Högler, Wolfgang; Muroya, Koji; Tanaka, Hiroyuki; Gottesman, Gary S.; Biggin, Andrew; Perwad, Farzana; Williams, Angela; Nixon, Annabel; Sun, Wei; Chen, Angel; Skrinar, Alison; Imel, Erik A.; Medicine, School of MedicineChanging to burosumab, a monoclonal antibody targeting fibroblast growth factor 23, significantly improved phosphorus homeostasis, rickets, lower-extremity deformities, mobility, and growth versus continuing oral phosphate and active vitamin D (conventional therapy) in a randomized, open-label, phase 3 trial involving children aged 1-12 years with X-linked hypophosphatemia. Patients were randomized (1:1) to subcutaneous burosumab or to continue conventional therapy. We present patient-reported outcomes (PROs) from this trial for children aged ≥ 5 years at screening (n = 35), using a Patient-Reported Outcomes Measurement Information System (PROMIS) questionnaire and SF-10 Health Survey for Children. PROMIS pain interference, physical function mobility, and fatigue scores improved from baseline with burosumab at weeks 40 and 64, but changed little with continued conventional therapy. Pain interference scores differed significantly between groups at week 40 (- 5.02, 95% CI - 9.29 to - 0.75; p = 0.0212) but not at week 64. Between-group differences were not significant at either week for physical function mobility or fatigue. Reductions in PROMIS pain interference and fatigue scores from baseline were clinically meaningful with burosumab at weeks 40 and 64 but not with conventional therapy. SF-10 physical health scores (PHS-10) improved significantly with burosumab at week 40 (least-squares mean [standard error] + 5.98 [1.79]; p = 0.0008) and week 64 (+ 5.93 [1.88]; p = 0.0016) but not with conventional therapy (between-treatment differences were nonsignificant). In conclusion, changing to burosumab improved PRO measures, with statistically significant differences in PROMIS pain interference at week 40 versus continuing with conventional therapy and in PHS-10 at weeks 40 and 64 versus baseline.Item Pharmacokinetics and pharmacodynamics of a human monoclonal anti‐FGF23 antibody (KRN23) in the first multiple ascending‐dose trial treating adults with X‐linked hypophosphatemia(Wiley, 2016-02) Zhang, Xiaoping; Imel, Erik A.; Ruppe, Mary D.; Weber, Thomas J.; Klausner, Mark A.; Ito, Takahiro; Vergeire, Maria; Humphrey, Jeffrey; Glorieux, Francis H.; Portale, Anthony A.; Insogna, Karl; Carpenter, Thomas O.; Peacock, Munro; Department of Medicine, IU School of MedicineIn X-linked hypophosphatemia (XLH), serum fibroblast growth factor 23 (FGF23) is increased and results in reduced renal maximum threshold for phosphate reabsorption (TmP), reduced serum inorganic phosphorus (Pi), and inappropriately low normal serum 1,25 dihydroxyvitamin D (1,25[OH]2D) concentration, with subsequent development of rickets or osteomalacia. KRN23 is a recombinant human IgG1 monoclonal antibody that binds to FGF23 and blocks its activity. Up to 4 doses of KRN23 were administered subcutaneously every 28 days to 28 adults with XLH. Mean ± standard deviation KRN23 doses administered were 0.05, 0.10 ± 0.01, 0.28 ± 0.06, and 0.48 ± 0.16 mg/kg. The mean time to reach maximum serum KRN23 levels was 7.0 to 8.5 days. The mean KRN23 half-life was 16.4 days. The mean area under the concentration–time curve (AUCn) for each dosing interval increased proportionally with increases in KRN23 dose. The mean intersubject variability in AUCn ranged from 30% to 37%. The area under the effect concentration–time curve (AUECn) for change from baseline in TmP per glomerular filtration rate, serum Pi, 1,25(OH)2D, and bone markers for each dosing interval increased linearly with increases in KRN23 AUCn. Linear correlation between serum KRN23 concentrations and increase in serum Pi support KRN23 dose adjustments based on predose serum Pi concentration.Item Potential influences on optimizing long-term musculoskeletal health in children and adolescents with X-linked hypophosphatemia (XLH)(Springer Nature, 2022-01-31) Glorieux, Francis H.; Bonewald, Lynda F.; Harvey, Nicholas C.; van der Meulen, Marjolein C. H.; Medicine, School of MedicineIn recent years, much progress has been made in understanding the mechanisms of bone growth and development over a lifespan, including the crosstalk between muscle and bone, to achieve optimal structure and function. While there have been significant advances in understanding how to help improve and maintain bone health in normal individuals, there is limited knowledge on whether these mechanisms apply or are compromised in pathological states. X-linked hypophosphatemia (XLH) (ORPHA:89936) is a rare, heritable, renal phosphate-wasting disorder. The resultant chronic hypophosphatemia leads to progressive deterioration in musculoskeletal function, including impaired growth, rickets, and limb deformities in children, as well as lifelong osteomalacia with reduced bone quality and impaired muscle structure and function. The clinical manifestations of the disease vary both in presentation and severity in affected individuals, and many of the consequences of childhood defects persist into adulthood, causing significant morbidity that impacts physical function and quality of life. Intervention to restore phosphate levels early in life during the critical stages of skeletal development in children with XLH could optimize growth and may prevent or reduce bone deformities in childhood. A healthier bone structure, together with improved muscle function, can lead to physical activity enhancing musculoskeletal health throughout life. In adults, continued management may help to maintain the positive effects acquired from childhood treatment, thereby slowing or halting disease progression. In this review, we summarize the opinions from members of a working group with expertise in pediatrics, epidemiology, and bone, joint and muscle biology, on potential outcomes for people with XLH, who have been optimally treated from an early age and continue treatment throughout life.Item Potential influences on optimizing long-term musculoskeletal health in children and adolescents with X-linked hypophosphatemia (XLH)(Springer, 2022-01-31) Glorieux, Francis H.; Bonewald, Lynda F.; Harvey, Nicholas C.; van der Meulen , Marjolein C. H.; Anatomy, Cell Biology and Physiology, School of MedicineIn recent years, much progress has been made in understanding the mechanisms of bone growth and development over a lifespan, including the crosstalk between muscle and bone, to achieve optimal structure and function. While there have been significant advances in understanding how to help improve and maintain bone health in normal individuals, there is limited knowledge on whether these mechanisms apply or are compromised in pathological states. X-linked hypophosphatemia (XLH) (ORPHA:89936) is a rare, heritable, renal phosphate-wasting disorder. The resultant chronic hypophosphatemia leads to progressive deterioration in musculoskeletal function, including impaired growth, rickets, and limb deformities in children, as well as lifelong osteomalacia with reduced bone quality and impaired muscle structure and function. The clinical manifestations of the disease vary both in presentation and severity in affected individuals, and many of the consequences of childhood defects persist into adulthood, causing significant morbidity that impacts physical function and quality of life. Intervention to restore phosphate levels early in life during the critical stages of skeletal development in children with XLH could optimize growth and may prevent or reduce bone deformities in childhood. A healthier bone structure, together with improved muscle function, can lead to physical activity enhancing musculoskeletal health throughout life. In adults, continued management may help to maintain the positive effects acquired from childhood treatment, thereby slowing or halting disease progression. In this review, we summarize the opinions from members of a working group with expertise in pediatrics, epidemiology, and bone, joint and muscle biology, on potential outcomes for people with XLH, who have been optimally treated from an early age and continue treatment throughout life.Item Prolonged Correction of Serum Phosphorus in Adults With X-Linked Hypophosphatemia Using Monthly Doses of KRN23(The Endocrine Society, 2015-07) Imel, Erik A.; Zhang, Xiaoping; Ruppe, Mary D.; Weber, Thomas J.; Klausner, Mark A.; Ito, Takahiro; Vergeire, Maria; Humphrey, Jeffrey S.; Glorieux, Francis H.; Portale, Anthony A.; Insogna, Karl; Peacock, Munro; Carpenter, Thomas O.; Department of Medicine, IU School of MedicineCONTEXT: In X-linked hypophosphatemia (XLH), elevated fibroblast growth factor 23 (FGF23) decreases the renal tubular maximum reabsorption rate of phosphate/glomerular filtration rate (TmP/GFR) and serum inorganic phosphorus (Pi), resulting in rickets and/or osteomalacia. OBJECTIVE: The objective was to test the hypothesis that monthly KRN23 (anti-FGF23 antibody) would safely improve serum Pi in adults with XLH. DESIGN: Two sequential open-label phase 1/2 studies were done. SETTING: Six academic medical centers were used. PARTICIPANTS: Twenty-eight adults with XLH participated in a 4-month dose-escalation study (0.05-0.6 mg/kg); 22 entered a 12-month extension study (0.1-1 mg/kg). INTERVENTION: KRN23 was injected sc every 28 days. MAIN OUTCOME MEASURE: The main outcome measure was the proportion of subjects attaining normal serum Pi and safety. RESULTS: At baseline, mean TmP/GFR, serum Pi, and 1,25-dihydroxyvitamin D [1,25(OH)2D] were 1.6 ± 0.4 mg/dL, 1.9 ± 0.3 mg/dL, and 36.6 ± 14.3 pg/mL, respectively. During dose escalation, TmP/GFR, Pi, and 1,25(OH)2D increased, peaking at 7 days for TmP/GFR and Pi and at 3-7 days for 1,25(OH)2D, remaining above (TmP/GFR, Pi) or near [1,25(OH)2D] pre-dose levels at trough. After each of the four escalating doses, peak Pi was between 2.5 and 4.5 mg/dL in 14.8, 37.0, 74.1, and 88.5% of subjects, respectively. During the 12-month extension, peak Pi was in the normal range for 57.9-85.0% of subjects, and ≥25% maintained trough Pi levels within the normal range. Serum Pi did not exceed 4.5 mg/dL in any subject. Although 1,25(OH)2D levels increased transiently, mean serum and urinary calcium remained normal. KRN23 treatment increased biomarkers of skeletal turnover and had a favorable safety profile. CONCLUSIONS: Monthly KRN23 significantly increased serum Pi, TmP/GFR, and 1,25(OH)2D in all subjects. KRN23 has potential for effectively treating XLH.