- Browse by Author
Browsing by Author "Glazier, Bradley S."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Early-onset Dementia with Lewy Bodies(Wiley, 2004-04) Takao, Masaki; Ghetti, Bernardino; Yoshida, Hirotaka; Piccardo, Pedro; Narain, Yolanda; Murrell, Jill R.; Vidal, Ruben; Glazier, Bradley S.; Jakes, Ross; Tsutsui, Miho; Grazia Spillantini, Maria; Crowther, R. Anthony; Goedert, Michel; Koto, Atsuo; Pathology and Laboratory Medicine, School of MedicineThe clinical and neuropathological characteristics of an atypical form of dementia with Lewy bodies (DLB) are described. The proband experienced difficulties in her school performance at 13 years of age. Neurological examination revealed cognitive dysfunction, dysarthria, parkinsonism and myoclonus. By age 14 years, the symptoms had worsened markedly and the proband died at age 15 years. On neuropathological examination, the brain was severely atrophic. Numerous intracytoplasmic and intraneuritic Lewy bodies, as well as Lewy neurites, were present throughout the cerebral cortex and subcortical nuclel; vacuolar changes were seen in the upper layers of the neocortex and severe neuronal loss and gliosis were evident in the cerebral cortex and substantia nigra. Lewy bodies and Lewy neurites were strongly immunoreactive for alpha-synuclein and ubiquitin. Lewy bodies were composed of filamentous and granular material and isolated filaments were decorated by alpha-synuclein antibodies. Immunohistochemistry for tau or beta-amyloid yielded negative results. The etiology of this atypical form of DLB is unknown, since there was no family history and since sequencing of the exonic regions of alpha-Synuclein, beta-Synuclein, Synphilin-1, Parkin, Ubiquitin C-terminal hydrolase L1 and Neurofilament-M failed to reveal a pathogenic mutation. This study provides further evidence of the clinical and pathological heterogeneity of DLB.Item Role of dopamine D1 and D2 receptors in the nucleus accumbens in mediating reward(Society for Neuroscience, 1997-11-01) Ikemoto, Satoshi; Glazier, Bradley S.; Murphy, James M.; McBride, William J.; Psychiatry, School of MedicineThe objectives of this study were to examine the involvement of D1 and D2 receptors within the nucleus accumbens (ACB) in mediating reinforcement. The intracranial self-administration (ICSA) of D1 and D2 agonists was used to determine whether activating D1 and/or D2 receptors within the ACB of Wistar rats is reinforcing. At concentrations of 0.25, 0.50, and 1.0 mM (25, 50, and 100 pmol/100 nl of infusion), neither the D1 agonist R(+)-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol [SKF 38393 (SKF)] hydrochloride nor the D2 agonist (-)-quinpirole (Quin) hydrochloride was self-administered into the shell region of the ACB. On the other hand, equimolar mixtures of SKF and Quin (SKF+Quin), at concentrations of 0.25, 0.50, and 1.0 mM each, were significantly self-infused into the ACB shell. The core region of the ACB did not support the ICSA of SKF+Quin at any of these concentrations. Rats increased lever pressing when the response requirement was increased from a fixed ratio 1 (FR1) to FR3, and they responded significantly more on the infusion lever than they did on the control lever. Coadministration of either 0.50 mM R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4, 5-tetrahydro-1H-3-benzazepine (SCH 23390) hydrochloride, a D1 antagonist, or 0.50 mM S(-)-sulpiride, a D2 antagonist, completely abolished the ICSA of the mixture of SKF+Quin (each at 0.50 mM) into the ACB shell. The present results suggest that concurrent activation of D1- and D2-type receptors in the shell of the ACB had a cooperative effect on DA-mediated reward processes.Item TMEM106B amyloid filaments in the Biondi bodies of ependymal cells(Springer, 2024-11-06) Ghetti, Bernardino; Schweighauser, Manuel; Jacobsen, Max H.; Gray, Derrick; Bacioglu, Mehtap; Murzin, Alexey G.; Glazier, Bradley S.; Katsinelos, Taxiarchis; Vidal, Ruben; Newell, Kathy L.; Gao, Sujuan; Garringer, Holly J.; Spillantini, Maria Grazia; Scheres, Sjors H. W.; Goedert, Michel; Pathology and Laboratory Medicine, School of MedicineBiondi bodies are filamentous amyloid inclusions of unknown composition in ependymal cells of the choroid plexuses, ependymal cells lining cerebral ventricles and ependymal cells of the central canal of the spinal cord. Their formation is age-dependent and they are commonly associated with a variety of neurodegenerative conditions, including Alzheimer's disease and Lewy body disorders. Here, we show that Biondi bodies are strongly immunoreactive with TMEM239, an antibody specific for inclusions of transmembrane protein 106B (TMEM106B). Biondi bodies were labelled by both this antibody and the amyloid dye pFTAA. Many Biondi bodies were also labelled for TMEM106B and the lysosomal markers Hexosaminidase A and Cathepsin D. By transmission immuno-electron microscopy, Biondi bodies of choroid plexuses were decorated by TMEM239 and were associated with structures that resembled residual bodies or secondary lysosomes. By electron cryo-microscopy, TMEM106B filaments from Biondi bodies of choroid plexuses were similar (Biondi variant), but not identical, to the fold I that was previously identified in filaments from brain parenchyma.