- Browse by Author
Browsing by Author "Gilk, Stacey"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Characterization of a Novel Fis1 Interactor Required for Peripheral Distribution of the Mitochondrion of Toxoplasma Gondii(2021-02) Jacobs, Kylie; Arrizabalaga, Gustavo; Gilk, Stacey; Graham, Brett; John, Chandy; Yang, FrankToxoplasma’s singular mitochondrion is extremely dynamic and undergoes morphological changes throughout the parasite’s life cycle. While intracellular‚ the mitochondrion is maintained in a lasso shape that stretches around the parasite periphery and is in close proximity to the pellicle‚ suggesting the presence of membrane contact sites. Upon egress‚ these contact sites disappear‚ and the mitochondrion retracts and collapses towards the apical end of the parasite. Once reinvaded‚ the lasso shape is quickly reformed‚ indicating that dynamic membrane contact sites regulate the positioning of the mitochondrion. We discovered a novel protein (TgGT1_265180) that associates with the mitochondrion via interactions with the fission related protein Fis1. Knockout of TgGT1_265180‚ which we have dubbed LMF1 for Lasso Maintenance Factor 1‚ results in a complete disruption of the normal mitochondrial morphology. In intracellular LMF1 knockout parasites, the mitochondrial lasso shape is disrupted‚ and instead it is collapsed as normally only seen in extracellular parasites. Additionally, proper mitochondrial segregation is disrupted‚ resulting in parasites with no mitochondrion and extra mitochondrial material outside of the parasites. These gross morphological changes are associated with a significant reduction of parasite propagation and can be rescued by reintroduction of a wildtype copy of LMF1. Co-immunoprecipitations and Yeast Two-Hybrid predict interactions with the parasite pellicle. Therefore, we hypothesize that LMF1 mediates contact between the mitochondrion and the pellicle in a regulatable fashion‚ and that the LMF1-dependent morphodynamics are critical for parasite propagation. Current studies are focused on characterizing the consequences of mitochondrial collapse and identifying proteins that interact with LMF1 to position the mitochondrion to the periphery of the parasite.Item Characterization of a Putative Acid Phosphatase in Toxoplasma Gondii and Its Role in Parasite Propagation(2020-11) Blakely, William James; Arrizabalaga, Gustavo; Gilk, Stacey; Meroueh, Samy; Wek, RonaldThe parasite Toxoplasma gondii infects approximately one-third of people worldwide. Infection can lead to severe disease in those with a compromised immune system and primary infection during pregnancy can lead to severe birth defects or miscarriage. Treatment options are limited, have significant side effects, and are ineffective for all infection stages. Imperative to the discovery of novel therapeutic targets is a thorough understanding of how Toxoplasma propagates within a host. To replicate, the parasite must enter the cells of an infected organism where, during the invasion process, it surrounds itself with host cell membrane to form a parasitophorous vacuole (PV), within which it freely divides. To endure the intracellular environment of a host cell, Toxoplasma secretes a large repertoire of proteins beyond the PV to manipulate important host cellular functions. How these Toxoplasma proteins transit from parasites to host cell is not well understood. Protein translocation into the host cell is mediated by three proteins hypothesized to function as a putative translocon complex inside the PV, but whether other proteins are involved in the structure or regulation of this putative translocon remains unknown. The secreted protein GRA44, which contains a putative acid phosphatase domain, has been discovered to interact with members of this translocon and is required for downstream alteration of host cells. GRA44 was found to be post-translationally cleaved in a region homologous to sequences targeted by protozoan proteases of the secretory pathway with both major cleavage products secreted to the PV. Conditional knockdown of GRA44 resulted in loss of host cell cMyc upregulation, a phenotype also seen in translocon member disruption. Therefore, the putative acid phosphatase GRA44, in association with the translocon complex, is critical for host cell manipulation during infection, a process Toxoplasma relies upon for successful propagation as an intracellular pathogen.Item Differential Recruitment of Host Proteins to the Coxiella Burnetii Vacuole in the Absence of the Sterol Reductase CBU1206(2020-08) Ratnayake, Rochelle Chashmi; Gilk, Stacey; Yang, X. Frank; Tran, Tuan M.; Sullivan, William J., Jr.Q fever is a heavily underdiagnosed and underreported infection caused by the obligate intracellular pathogen Coxiella burnetii. Following entry into the host cell, Coxiella replicates in the acidic phagolysosome-like parasitophorous vacuole termed the Coxiella Containing Vacuole (CCV). The CCV is a large and highly fusogenic compartment that actively fuses with the host endocytic pathway during maturation of the phagolysosome. Evidence suggests that the development of the CCV is sensitive to increasing cholesterol levels and leads to CCV acidification and bacterial death. Therefore, we hypothesize that CCV cholesterol concentration is carefully modulated through the Coxiella encoded sterol reductases (CBU1206 and CBU1158). A ∆CBU1206 mutant of Coxiella is hypersensitive to cholesterol and displays growth defects in intracellular replication and CCV development. Following fusion with the host endocytic pathway, the Coxiella NMII Phase II (WT) CCVs readily acquire host proteins such as LAMP1, CD63, Rab7, ORP1L, RILP, and LC3. These heterotypic events with the host endosomal cascade are presumed to provide selected subsets of endocytosed cargo and membrane. Therefore, I investigated whether ΔCBU1206 CCV heterotypic fusion events are defective due to altered lipid content on the CCV membrane. I observed increased accumulation of sterols on the ΔCBU1206 CCV membrane. Similar to WT, the mutant readily fuses host lysosomes and readily acquires the host glycoprotein LAMP1 but displays reduced localization of CD63 (LAMP3). Additionally, reduced localization of the late endosomal markers Rab7, ORP1L, and RILP was observed suggesting that late endosome fusion maybe defective in ΔCBU1206. Further, reduced localization of LC3 was also observed suggesting that the mutant may also be defective in fusing with autophagosomes. Finally, the mutant possesses a functional Type 4 Secretion System that secretes a moderate amount of effector proteins relative to WT. Considering the vast array of functions accomplished by the effectors secreted, the moderate effector secretion by the mutant could influence the endocytic pathway fusion processes as well as CCV development. Collectively, this body of work suggests that the lack of sterol reductase CBU1206 in Coxiella results in defective heterotypic fusion events of the CCV membrane that could alter pathogenesis and CCV expansion.Item A forward genetic approach to identifying novel calcium regulators in Toxoplasma Gondii(2017-07-25) LaFavers, Kaice Arminda; Arrizabalaga, Gustavo; Brustovetsky, Nickolay; Cummins, Theodore; Gilk, Stacey; Sullivan, William J., Jr.Toxoplasma gondii is an obligate intracellular eukaryotic pathogen that causes severe neurologic disease in immunocompromised adults and congenitally infected neonates. Events critical to the propagation of T. gondii, such as invasion and egress, are regulated by calcium-dependent signaling. In order to identify unique components of the parasite’s calcium signaling networks, members of the Arrizabalaga laboratory have used a forward genetics approach to isolate mutants with altered sensitivity to the calcium ionophore A23187. Exposing extracellular parasites to A23187 induces protein secretion, motility and cytoskeletal rearrangements and prolonged treatment causes exhaustion of factors required for invasion, which results in what is referred to as ionophore induced death (iiDeath). Mutants capable of surviving this treatment were isolated from a chemically mutagenized population. Whole genome sequencing of one such mutant, MBD2.1, identified a nonsense mutation in a protein of unknown function (TGGT1_069070, ToxoDBv7.2) Complementation of MBD 2.1 with a wild-type copy of TGGT1_069070 restored sensitivity to iiDeath treatment. Endogenous tagging of this locus revealed that the encoded protein is secreted from a unique parasite secretory organelle known as the dense granule into the parasitophorous vacuole, leading to its designation as TgGRA41. Complete knockout of TgGRA41 recapitulates the resistance to iiDeath observed in MBD2.1 but also exhibits a dramatic decrease in propagation in tissue culture not seen in the original mutant. The knockout shows defects in multiple steps of the lytic including compromised invasion efficiency and premature egress of parasites from host cells. Cytosolic calcium measurements of extracellular parasites show enhanced uptake of calcium in the knockout strain as compared to parental and complemented, suggesting that the loss of TgGra41 results in calcium dysregulation. Together, these results provide a novel insight into the role that the parasitophorous vacuole of T. gondii plays in calcium homeostasis and calcium-dependent signaling processes.Item Function of a Unique Dually Localized EF-Hand Domain Containing Protein, TgEFP1, During the Lytic Cycle of the Human Parasite Toxoplasma Gondii(2022-08) Dave, Noopur Kirti; Arrizabalaga, Gustavo; Absalon, Sabrina; Fehrenbacher, Jill; Gilk, Stacey; Jerde, Travis; Mastracci, TeresaThe pathogenesis associated with toxoplasmosis is attributed to repeated rounds of the parasite lytic cycle, which has been shown to be regulated by calcium fluxes. However, little is known about the calcium homeostatic mechanisms utilized by T. gondii. Recently, our lab has identified a novel protein-TgEFP1 (TGGT1_255660), which is predicted to bind Ca2+ through its two EF-hand domains. Interestingly, TgEFP1 showed a unique dual localization at the PLV/ELC and the PV of the parasite. Previous work showed that the PLV/ELC harbors other ion binding and conducting proteins that are important for parasite survival and propagation. However, the function of this compartment in the parasite is unknown. Therefore, I hypothesize that the PLV/ELC, through the function of TgEFP1, plays a key role in calcium homeostasis of T. gondii. To test this hypothesis, we sought to characterize the function of TgEFP1 during the parasite lytic cycle and determine TgEFP1 interacting proteins that also localize to the PLV/ELC. Partial permeabilization and ultrastructure expansion microscopy techniques confirmed the dual localization of TgEFP1 at the PLV/ELC and the PV. TgEFP1 knockout parasites exhibited several phenotypic defects including a faster lytic rate, shorter intracellular cycle, and were more sensitive to calcium ionophore treatment. Signal peptide deletion led to a mislocalization of TgEFP1 as cytosolic puncta, while mutations at key calcium coordinating residues lead to exclusive localization of TgEFP1 at the PV. Lastly, immunoprecipitation assays followed by LC-MS/MS identified a novel lectin-like protein- TgLectin (TGGT1_258950) as a direct interactor of TgEFP1-HA. Collectively, these findings support that through the function of TgEFP1, the PLV/ELC, plays a key role in calcium-dependent processes during the lytic cycle of the parasite.Item Identifying Factors Controlling Cell Shape and Virulence Gene Expression in Borrelia Burgdorferi(2019-08) Grothe, Amberly Nicole; Yang, X. Frank; Gilk, Stacey; Nelson, DavidLyme disease is a multi-system inflammatory disorder that is currently the fastest growing arthropod-borne disease in the United States. The Lyme disease pathogen, Borrelia burgdorferi, exists within an enzootic cycle consisting of Ixodes tick vectors and a variety of vertebrate hosts. Borrelia lies within a distinct clade of microorganisms known as spirochetes which exhibit a unique spiral morphology. The underlying genetic mechanisms controlling for borrelial morphologies are still being discovered. One flagellar protein, FlaB, has been indicated to affect both spiral shape and motility of the organisms and significantly impacts the organism’s ability to establish infection. Due to the potential connection between morphological characteristics and pathogenesis, we sought to screen and identify morphological mutants in an attempt to identify genes associated with morphological phenotypes of Borrelia burgdorferi. Among Borrelia’s unique features is the presence of abundant lipoproteins making up its cellular membrane as opposed to the typical lipopolysaccharides. These proteins confer a wide variety of functions to the microorganism, among which include the abilities to circulate between widely differing hosts and to establish infection. Two important outer surface proteins, OspC and OspA, are found to be inversely expressed throughout the borrelial life cycle. OspC, in particular, becomes highly expressed during tick-feeding and transmission to the mammalian host. It has been found to be essential for establishment of infection. A global regulatory pathway has been shown to control for OspC, however there are missing links in this pathway between the external stimuli (such as temperature, pH, and cell density) and the regulatory pathway. We have performed a screening process to identify OspC expression mutants in order to identify novel genes associated with this pathway.Item Investigating the Function and Therapeutic Potential of the GCN5b Bromodomain in Toxoplasma Gondii(2020-06) Hanquier, Jocelyne Nicole; Sullivan, William J., Jr.; Arrizabalaga, Gustavo; Gilk, StaceyThe obligate intracellular protozoan parasite Toxoplasma gondii is a medically relevant pathogen that has infected a third of the world’s population. Toxoplasma is the causative agent of toxoplasmosis, which can have severe repercussions such as encephalitis and even death in immunocompromised patients. Current treatments for toxoplasmosis only target acute infection and can be toxic to patients, resulting in complications including allergy and bone marrow suppression. Thus, the identification of novel drug targets and therapies for toxoplasmosis is vital. Epigenetic modulators of lysine acetylation, including ‘writers,’ ‘erasers,’ and ‘readers,’ have been identified as promising drug targets for protozoan parasites. The lysine acetyltransferase (KAT) GCN5b appears to be an essential gene for Toxoplasma viability. The KAT domain of GCN5b is essential to GCN5b function and is targetable by small molecule inhibitors. While the acetyltransferase activity of this gene is well-characterized, the functionality of its C-terminal bromodomain (BRD) remains to be understood. Bromodomains are readers of lysine acetylation, and recently, bromodomain inhibitors have shown promise in a number of human diseases, as well as in protozoan parasites. We hypothesized that the GCN5b bromodomain is critical for Toxoplasma viability. The data reported herein suggest that the GCN5b bromodomain is important for tachyzoite viability and may serve as a novel therapeutic target in Toxoplasma.Item Measuring pH of the Coxiella burnetii Parasitophorous Vacuole(Wiley, 2017-11) Samanta, Dhritiman; Gilk, Stacey; Microbiology and Immunology, School of MedicineCoxiella burnetii is the causative agent of human Q fever, a zoonotic disease that can cause a debilitating, flu‐like illness in acute cases, or a life‐threatening endocarditis in chronic patients. An obligate intracellular bacterial pathogen, Coxiella survives and multiplies in a large lysosome‐like vacuole known as the Coxiella parasitophorous vacuole (CPV). A unique characteristic of the CPV is the acidic environment (pH ∼5.0), which is required to activate Coxiella metabolism and the Coxiella type 4 secretion system (T4SS), a major virulence factor required for intracellular survival. Further, inhibiting or depleting vacuolar ATPase, a host cell protein that regulates lysosomal pH, inhibits intracellular Coxiella growth. Together, these data suggest that CPV pH is an important limiting factor for Coxiella growth and virulence. This unit describes a method to determine CPV pH using live cell microscopy of a pH–sensitive fluorophore conjugated to dextran. This technique is useful to measure changes in CPV pH during infection or in response to drug treatment.Item Quantitative Dextran Trafficking to the Coxiella burnetii Parasitophorous Vacuole(Wiley, 2017-08-11) Winfree, Seth; Gilk, Stacey; Microbiology and Immunology, School of MedicineThe gram-negative bacterium Coxiella burnetii causes human Q fever, a disease characterized by a debilitating flu-like illness in acute cases and endocarditis in chronic patients. An obligate intracellular pathogen, Coxiella burnetii survives within a large, lysosome-like vacuole inside the host cell. A unique feature of the Coxiella parasitophorous vacuole (PV) is high levels of fusion with the host endocytic pathway, with PV-endosome fusion critical for Coxiella survival within the host cell. This unit describes quantitating PV-endosome fusion by measuring delivery of the fluid phase endosome marker dextran to the PV using live cell imaging. To study the effect of host cell proteins involved in PV-endosome fusion, details are provided for using siRNA knockdown host cells. This method is a powerful tool for understanding mechanisms underlying Coxiella's ability to manipulate host cell trafficking pathways.Item The Role of PfEMP1 Expression and Immunity in Ugandian Children with Severe Malaria(2022-05) Fernander, Elizabeth M.; John, Chandy; Bauer, Margaret; Gilk, Stacey; Tran, TuanSevere malaria, primarily caused by Plasmodium falciparum infection, is among the leading causes of childhood mortality globally. A key virulence factor and source of antigenic variation and immune evasion during infection is P. falciparum erythrocyte membrane protein 1 (PfEMP1). Encoded for by approximately 60 var genes, this complex protein mediates cytoadherence of infected erythrocytes to the host endothelium and is a prominent immune target for the anti-malarial immune response in children. During severe malaria, specific domains of PfEMP1 that bind to endothelial protein C receptor (EPCR) and intercellular adhesion molecule-1 (ICAM-1) on host endothelial cells, are more prevalently expressed. The interaction of these proteins and infected erythrocytes mediates the sequestration of infected erythrocytes and plays a role in severe malaria pathogenesis. Antibodies to these domains develop over time with exposure to the parasite and are thought to contribute to immunity against severe malaria in children. In this study, whole blood samples from children with different forms of severe malaria, enrolled in two observational prospective cohort studies were used to quantify the expression of PfEMP1 domains using RT-qPCR and to measure the antibody response to PfEMP1 domains via a bead-based multiplex immunoassay. Using these samples, we demonstrated that although the expression of var transcripts encoding PfEMP1 domains was generally similar across children with different forms of severe malaria, the expression of variants encoding specific EPCR-binding domains was associated with thrombocytopenia and severe anemia. The antibody response to PfEMP1 domains in children with severe malaria was highest in children with SMA and children with asymptomatic parasitemia, but not associated with decreased risk of additional malaria episodes. Overall, the results of this study suggest that PfEMP1 is acting similarly across different forms of severe malaria but that it can be related to pathogenesis and severe malaria immunity.