- Browse by Author
Browsing by Author "Gichoya, Judy W."
Now showing 1 - 10 of 18
Results Per Page
Sort Options
Item Comparison of Open-Source Electronic Health Record Systems Based on Functional and User Performance Criteria(The Korean Society of Medical Informatics, 2019-04) Purkayastha, Saptarshi; Allam, Roshini; Maity, Pallavi; Gichoya, Judy W.; BioHealth Informatics, School of Informatics and ComputingObjectives: Open-source Electronic Health Record (EHR) systems have gained importance. The main aim of our research is to guide organizational choice by comparing the features, functionality, and user-facing system performance of the five most popular open-source EHR systems. Methods: We performed qualitative content analysis with a directed approach on recently published literature (2012-2017) to develop an integrated set of criteria to compare the EHR systems. The functional criteria are an integration of the literature, meaningful use criteria, and the Institute of Medicine's functional requirements of EHR, whereas the user-facing system performance is based on the time required to perform basic tasks within the EHR system. Results: Based on the Alexa web ranking and Google Trends, the five most popular EHR systems at the time of our study were OSHERA VistA, GNU Health, the Open Medical Record System (OpenMRS), Open Electronic Medical Record (OpenEMR), and OpenEHR. We also found the trends in popularity of the EHR systems and the locations where they were more popular than others. OpenEMR met all the 32 functional criteria, OSHERA VistA met 28, OpenMRS met 12 fully and 11 partially, OpenEHR-based EHR met 10 fully and 3 partially, and GNU Health met the least with only 10 criteria fully and 2 partially. Conclusions: Based on our functional criteria, OpenEMR is the most promising EHR system, closely followed by VistA. With regards to user-facing system performance, OpenMRS has superior performance in comparison to OpenEMR.Item Critical Components of Formative Assessment in Process-Oriented Guided Inquiry Learning for Online Labs(ACPI, 2019) Purkayastha, Saptarshi; Surapaneni, Asha K.; Maity, Pallavi; Rajapuri, Anushri S.; Gichoya, Judy W.; BioHealth Informatics, School of Informatics and ComputingIn the traditional lab setting, it is reasonably straightforward to monitor student learning and provide ongoing feedback. Such formative assessments can help students identify their strengths and weaknesses, and assist faculty to recognize where students are struggling and address problems immediately. But in an online virtual lab setting, formative assessment has challenges that go beyond space-time synchrony of online classroom. As we see increased enrollment in online courses, learning science needs to address the problem of formative assessment in online laboratory sessions. We developed a student team learning monitor (STLM module) in an electronic health record system to measure student engagement and actualize the social constructivist approach of Process Oriented Guided Inquiry Learning (POGIL). Using iterative Plan-Do-Study-Act cycles in two undergraduate courses over a period of two years, we identified critical components that are required for online implementation of POGIL. We reviewed published research on POGIL classroom implementations for the last ten years and identified some common elements that affect learning gains. We present the critical components that are necessary for implementing POGIL in online lab settings, and refer to this as Cyber POGIL. Incorporating these critical components are required to determine when, how and the circumstances under which Cyber POGIL may be successfully implemented. We recommend that more online tools be developed for POGIL classrooms, which evolve from just providing synchronous communication to improved task monitoring and assistive feedback.Item Current Clinical Applications of Artificial Intelligence in Radiology and Their Best Supporting Evidence(Elsevier, 2020-11) Tariq, Amara; Purkayastha, Saptarshi; Padmanaban, Geetha Priya; Krupinski, Elizabeth; Trivedi, Hari; Banerjee, Imon; Gichoya, Judy W.; BioHealth Informatics, School of Informatics and ComputingPurpose Despite tremendous gains from deep learning and the promise of artificial intelligence (AI) in medicine to improve diagnosis and save costs, there exists a large translational gap to implement and use AI products in real-world clinical situations. Adoption of standards such as Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis, Consolidated Standards of Reporting Trials, and the Checklist for Artificial Intelligence in Medical Imaging is increasing to improve the peer-review process and reporting of AI tools. However, no such standards exist for product-level review. Methods A review of clinical trials showed a paucity of evidence for radiology AI products; thus, the authors developed a 10-question assessment tool for reviewing AI products with an emphasis on their validation and result dissemination. The assessment tool was applied to commercial and open-source algorithms used for diagnosis to extract evidence on the clinical utility of the tools. Results There is limited technical information on methodologies for FDA-approved algorithms compared with open-source products, likely because of intellectual property concerns. Furthermore, FDA-approved products use much smaller data sets compared with open-source AI tools, because the terms of use of public data sets are limited to academic and noncommercial entities, which precludes their use in commercial products. Conclusions Overall, this study reveals a broad spectrum of maturity and clinical use of AI products, but a large gap exists in exploring actual performance of AI tools in clinical practice.Item Energy Efficiency of Quantized Neural Networks in Medical Imaging(2022-04) Sinha, Priyanshu; Tummala, Sai Sreya; Purkayastha, Saptarshi; Gichoya, Judy W.; BioHealth Informatics, School of Informatics and ComputingThe main goal of this paper is to compare the energy efficiency of quantized neural networks to perform medical image analysis on different processors and neural network architectures. Deep neural networks have demonstrated outstanding performance in medical image analysis but require high computation and power usage. In our work, we review the power usage and temperature of processors when running Resnet and Unet architectures to perform image classification and segmentation respectively. We compare Edge TPU, Jetson Nano, Apple M1, Nvidia Quadro P6000 and Nvidia A6000 to infer using full-precision FP32 and quantized INT8 models. The results will be useful for designers and implementers of medical imaging AI on hand-held or edge computing devices.Item Evaluating the Implementation of Deep Learning in LibreHealth Radiology on Chest X-Rays(Springer, 2019-04-25) Purkayastha, Saptarshi; Buddi, Surendra Babu; Yadav, Bhawana; Nuthakki, Siddhartha; Gichoya, Judy W.Respiratory diseases are the dominant cause of deaths worldwide. In the US, the number of deaths due to chronic lung infections (mostly pneumonia and tuberculosis), lung cancer and chronic obstructive pulmonary disease has increased. Timely and accurate diagnosis of the disease is highly imperative to diminish the deaths. Chest X-ray is a vital diagnostic tool used for diagnosing lung diseases. Delay in X-Ray diagnosis is run-of-the-mill milieu and the reasons for the impediment are mostly because the X-ray reports are arduous to interpret, due to the complex visual contents of radiographs containing superimposed anatomical structures. A shortage of trained radiologists is another cause of increased workload and thus delay. We integrated CheXNet, a neural network algorithm into the LibreHealth Radiology Information System, which allows physicians to upload Chest X-rays and identify diagnosis probabilities. The uploaded images are evaluated from labels for 14 thoracic diseases. The turnaround time for each evaluation is about 30 seconds, which does not affect clinical workflow. A Python Flask application hosted web service is used to upload radiographs into a GPU server containing the algorithm. Thus, the use of this system is not limited to clients having their GPU server, but instead, we provide a web service. To evaluate the model, we randomly split the dataset into training (70%), validation (10%) and test (20%) sets. With over 86% accuracy and turnaround time under 30 seconds, the application demonstrates the feasibility of a web service for machine learning based diagnosis of 14-lung pathologies from Chest X-rays.Item Implementation of a single sign-on system between practice, research and learning systems(Thieme, 2017-03-29) Purkayastha, Saptarshi; Gichoya, Judy W.; Addepally, Siva Abhishek; BioHealth Informatics, School of Informatics and ComputingBackground: Multiple specialized electronic medical systems are utilized in the health enterprise. Each of these systems has their own user management, authentication and authorization process, which makes it a complex web for navigation and use without a coherent process workflow. Users often have to remember multiple passwords, login/logout between systems that disrupt their clinical workflow. Challenges exist in managing permissions for various cadres of health care providers. Objectives: This case report describes our experience of implementing a single sign-on system, used between an electronic medical records system and a learning management system at a large academic institution with an informatics department responsible for student education and a medical school affiliated with a hospital system caring for patients and conducting research. Methods: At our institution, we use OpenMRS for research registry tracking of interventional radiology patients as well as to provide access to medical records to students studying health informatics. To provide authentication across different users of the system with different permissions, we developed a Central Authentication Service (CAS) module for OpenMRS, released under the Mozilla Public License and deployed it for single sign-on across the academic enterprise. The module has been in implementation since August 2015 to present, and we assessed usability of the registry and education system before and after implementation of the CAS module. 54 students and 3 researchers were interviewed. Results: The module authenticates users with appropriate privileges in the medical records system, providing secure access with minimal disruption to their workflow. No passwords requests were sent and users reported ease of use, with streamlined workflow. Conclusions: The project demonstrates that enterprise-wide single sign-on systems should be used in healthcare to reduce complexity like "password hell", improve usability and user navigation. We plan to extend this to work with other systems used in the health care enterprise.Item Implementing clinical practice guidelines for chronic obstructive pulmonary disease in an EHR system(IEEE, 2017-11) Walker, Marisa; Ge, WeiWei; Gichoya, Judy W.; Purkayastha, Saptarshi; BioHealth Informatics, School of Informatics and ComputingThe use of clinical practice guidelines to improve quality of care has been a vividly discussed topic. Clinical practice guidelines (CPG) aim to improve the health of patients by guiding individual care in clinical settings. CPGs bring potential benefits for patients by improving clinical decision making, improving efficiency and enhancing patient care, while essentially optimizing financial value. Chronic conditions like heart disease, stroke, and chronic obstructive pulmonary disease (COPD), plague the US healthcare system causing several million dollars in healthcare related cost. This paper demonstrates the development of a CPG into an open-source EHR system to effectively manage COPD patients. The CPG is incorporated using the open web app standard, which allows it to be used with any web browser based EHR system, once data from the EHR system can be fed into the app. As a result, the CPG helps create a more effective and efficient decision-making process.Item Just in Time Radiology Decision Support Using Real-time Data Feeds(SpringerLink, 2020-02) Burns, John L.; Hasting, Dan; Gichoya, Judy W.; McKibben, Ben, III.; Shea, Lindsey; Frank, Mark; Radiology and Imaging Sciences, School of MedicineReady access to relevant real-time information in medical imaging offers several potential benefits. Knowing both when important information will be available and that important information is available can facilitate optimization of workflow and management of time. Unexpected findings, as well as deficiencies in reporting and documentation, can be immediately managed. Herein, we present our experience developing and implementing a real-time web-centric dashboard system for radiologists, clinicians, and support staff. The dashboards are driven by multi-sourced HL7 message streams that are monitored, analyzed, aggregated, and transformed into multiple real-time displays to improve operations within our department. We call this framework Pipeline. Ruby on Rails, JavaScript, HTML, and SQL serve as the foundations of the Pipeline application. HL7 messages are processed in real-time by a Mirth interface engine which posts exam data into SQL. Users utilize web browsers to visit the Ruby on Rails-based dashboards on any device connected to our hospital network. The dashboards will automatically refresh every 30 seconds using JavaScript. The Pipeline application has been well received by clinicians and radiologists.Item Multi-label natural language processing to identify diagnosis and procedure codes from MIMIC-III inpatient notes(arXiv, 2020) Bhavani Singh, A. K.; Guntu, Mounika; Bhimireddy, Ananth Reddy; Gichoya, Judy W.; Purkayastha, Saptarshi; BioHealth Informatics, School of Informatics and ComputingIn the United States, 25% or greater than 200 billion dollars of hospital spending accounts for administrative costs that involve services for medical coding and billing. With the increasing number of patient records, manual assignment of the codes performed is overwhelming, time-consuming and error-prone, causing billing errors. Natural language processing can automate the extraction of codes/labels from unstructured clinical notes, which can aid human coders to save time, increase productivity, and verify medical coding errors. Our objective is to identify appropriate diagnosis and procedure codes from clinical notes by performing multi-label classification. We used de-identified data of critical care patients from the MIMIC-III database and subset the data to select the ten (top-10) and fifty (top-50) most common diagnoses and procedures, which covers 47.45% and 74.12% of all admissions respectively. We implemented state-of-the-art Bidirectional Encoder Representations from Transformers (BERT) to fine-tune the language model on 80% of the data and validated on the remaining 20%. The model achieved an overall accuracy of 87.08%, an F1 score of 85.82%, and an AUC of 91.76% for top-10 codes. For the top-50 codes, our model achieved an overall accuracy of 93.76%, an F1 score of 92.24%, and AUC of 91%. When compared to previously published research, our model outperforms in predicting codes from the clinical text. We discuss approaches to generalize the knowledge discovery process of our MIMIC-BERT to other clinical notes. This can help human coders to save time, prevent backlogs, and additional costs due to coding errors.Item Multireader evaluation of radiologist performance for COVID-19 detection on emergency department chest radiographs(Elsevier, 2022-02) Gichoya, Judy W.; Sinha, Priyanshu; Davis, Melissa; Dunkle, Jeffrey W.; Hamlin, Scott A.; Herr, Keith D.; Hoff, Carrie N.; Letter, Haley P.; McAdams, Christopher R.; Puthoff, Gregory D.; Smith, Kevin L.; Steenburg, Scott D.; Banerjee, Imon; Trivedi, Hari; Radiology and Imaging Sciences, School of MedicineBACKGROUND: Chest radiographs (CXR) are frequently used as a screening tool for patients with suspected COVID-19 infection pending reverse transcriptase polymerase chain reaction (RT-PCR) results, despite recommendations against this. We evaluated radiologist performance for COVID-19 diagnosis on CXR at the time of patient presentation in the Emergency Department (ED). MATERIALS AND METHODS: We extracted RT-PCR results, clinical history, and CXRs of all patients from a single institution between March and June 2020. 984 RT-PCR positive and 1043 RT-PCR negative radiographs were reviewed by 10 emergency radiologists from 4 academic centers. 100 cases were read by all radiologists and 1927 cases by 2 radiologists. Each radiologist chose the single best label per case: Normal, COVID-19, Other - Infectious, Other - Noninfectious, Non-diagnostic, and Endotracheal Tube. Cases labeled with endotracheal tube (246) or non-diagnostic (54) were excluded. Remaining cases were analyzed for label distribution, clinical history, and inter-reader agreement. RESULTS: 1727 radiographs (732 RT-PCR positive, 995 RT-PCR negative) were included from 1594 patients (51.2% male, 48.8% female, age 59 ± 19 years). For 89 cases read by all readers, there was poor agreement for RT-PCR positive (Fleiss Score 0.36) and negative (Fleiss Score 0.46) exams. Agreement between two readers on 1638 cases was 54.2% (373/688) for RT-PCR positive cases and 71.4% (679/950) for negative cases. Agreement was highest for RT-PCR negative cases labeled as Normal (50.4%, n = 479). Reader performance did not improve with clinical history or time between CXR and RT-PCR result. CONCLUSION: At the time of presentation to the emergency department, emergency radiologist performance is non-specific for diagnosing COVID-19.