- Browse by Author
Browsing by Author "Ghenea, Alice Elena"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Assessment of Deep Learning Methods for Differentiating Autoimmune Disorders in Ultrasound Images(Medical University Publishing House Craiova, 2021) Vasile, Corina Maria; Udriştoiu, Anca Loredana; Ghenea, Alice Elena; Padureanu, Vlad; Udriştoiu, Ştefan; Gruionu, Lucian Gheorghe; Gruionu, Gabriel; Iacob, Andreea Valentina; Popescu, Mihaela; Medicine, School of MedicineAt present, deep learning becomes an important tool in medical image analysis, with good performance in diagnosing, pattern detection, and segmentation. Ultrasound imaging offers an easy and rapid method to detect and diagnose thyroid disorders. With the help of a computer-aided diagnosis (CAD) system based on deep learning, we have the possibility of real-time and non-invasive diagnosing of thyroidal US images. This paper proposed a study based on deep learning with transfer learning for differentiating the thyroidal ultrasound images using image pixels and diagnosis labels as inputs. We trained, assessed, and compared two pre-trained models (VGG-19 and Inception v3) using a dataset of ultrasound images consisting of 2 types of thyroid ultrasound images: autoimmune and normal. The training dataset consisted of 615 thyroid ultrasound images, from which 415 images were diagnosed as autoimmune, and 200 images as normal. The models were assessed using a dataset of 120 images, from which 80 images were diagnosed as autoimmune, and 40 images diagnosed as normal. The two deep learning models obtained very good results, as follows: the pre-trained VGG-19 model obtained 98.60% for the overall test accuracy with an overall specificity of 98.94% and overall sensitivity of 97.97%, while the Inception v3 model obtained 96.4% for the overall test accuracy with an overall specificity of 95.58% and overall sensitivity of 95.58.Item Intelligent Diagnosis of Thyroid Ultrasound Imaging Using an Ensemble of Deep Learning Methods(MDPI, 2021-04-19) Vasile, Corina Maria; Udriștoiu, Anca Loredana; Ghenea, Alice Elena; Popescu, Mihaela; Gheonea, Cristian; Niculescu, Carmen Elena; Ungureanu, Anca Marilena; Udriștoiu, Ștefan; Drocaş, Andrei Ioan; Gruionu, Lucian Gheorghe; Gruionu, Gabriel; Iacob, Andreea Valentina; Alexandru, Dragoş Ovidiu; Medicine, School of MedicineBackground and Objectives: At present, thyroid disorders have a great incidence in the worldwide population, so the development of alternative methods for improving the diagnosis process is necessary. Materials and Methods: For this purpose, we developed an ensemble method that fused two deep learning models, one based on convolutional neural network and the other based on transfer learning. For the first model, called 5-CNN, we developed an efficient end-to-end trained model with five convolutional layers, while for the second model, the pre-trained VGG-19 architecture was repurposed, optimized and trained. We trained and validated our models using a dataset of ultrasound images consisting of four types of thyroidal images: autoimmune, nodular, micro-nodular, and normal. Results: Excellent results were obtained by the ensemble CNN-VGG method, which outperformed the 5-CNN and VGG-19 models: 97.35% for the overall test accuracy with an overall specificity of 98.43%, sensitivity of 95.75%, positive and negative predictive value of 95.41%, and 98.05%. The micro average areas under each receiver operating characteristic curves was 0.96. The results were also validated by two physicians: an endocrinologist and a pediatrician. Conclusions: We proposed a new deep learning study for classifying ultrasound thyroidal images to assist physicians in the diagnosis process.