- Browse by Author
Browsing by Author "Gaston, Benjamin"
Now showing 1 - 10 of 42
Results Per Page
Sort Options
Item A Between-Sex Comparison of the Genomic Architecture of Asthma(American Thoracic Society, 2023) Zein, Joe G.; Bazeley, Peter; Meyers, Deborah; Bleecker, Eugene; Gaston, Benjamin; Hu, Bo; Attaway, Amy; Ortega, Victor; Pediatrics, School of MedicineItem A matched analysis of the use of high flow nasal cannula for pediatric severe acute asthma(Wiley, 2024) Rogerson, Colin; AbuSultaneh, Samer; Sanchez‐Pinto, L. Nelson; Gaston, Benjamin; Wiehe, Sarah; Schleyer, Titus; Tu, Wanzhu; Mendonca, Eneida; Pediatrics, School of MedicineRationale: The high-flow nasal cannula (HFNC) device is commonly used to treat pediatric severe acute asthma. However, there is little evidence regarding its effectiveness in real-world practice. Objectives: We sought to compare the physiologic effects and clinical outcomes for children treated for severe acute asthma with HFNC versus matched controls. Methods: This was a single-center retrospective matched cohort study at a quaternary care children's hospital. Children ages 2-18 hospitalized for severe acute asthma from 2015 to 2022 were included. Encounters receiving treatment with HFNC within the first 24 h of hospitalization were included as cases. Controls were primarily treated with oxygen facemask. Logistic regression 1:1 propensity score matching was done using demographics, initial vital signs, and medications. The primary outcome was an improvement in clinical asthma symptoms in the first 24 h of hospitalization measured as percent change from initial. Measurements and main results: Of 693 eligible cases, 443 were matched to eligible controls. Propensity scores were closely aligned between the cohorts, with the only significant difference in clinical characteristics being a higher percentage of patients of Black race in the control group (54.3% vs. 46.6%; p = 0.02). Compared to the matched controls, the HFNC cohort had smaller improvements in heart rate (-11.5% [-20.9; -0.9] vs. -14.7% [-22.6;-5.7]; p < 0.01), respiratory rate (-14.3% [-27.9;5.4] vs. -16.7% [-31.5;0.0]; p = 0.03), and pediatric asthma severity score (-14.3% [-28.6;0.0] vs. -20.0% [-33.3;0.0]; p < 0.01) after 24 h of hospitalization. The HFNC cohort also had longer pediatric intensive care unit (PICU) length of stay (LOS) (1.5 days [1.1;2.1] vs. 1.2 days [0.9;1.8]; p < 0.01) and hospital LOS (2.8 days [2.1;3.8] vs. 2.5 days [1.9;3.4]; p < 0.01). When subgrouping to younger patients (2-3 years old), or those with the highest severity scores (PASS > 9), those treated with HFNC had no difference in clinical symptom improvements but maintained a longer PICU LOS. Conclusions: Encounters using HFNC for severe acute pediatric asthma had decreased clinical improvement in 24 h of hospitalization compared to matched controls and increased LOS. Specific subgroups of younger patients and those with the highest severity scores showed no differences in clinical symptom improvement suggesting differential effects in specific patient populations.Item Airway Thiol-NO Adducts as Determinants of Exhaled NO(MDPI, 2021-09-26) Pophal, Megan; Grimmett, Zachary W.; Chu, Clara; Margevicius, Seunghee; Raffay, Thomas; Ross, Kristie; Jafri, Anjum; Giddings, Olivia; Stamler, Jonathan S.; Gaston, Benjamin; Reynolds, James D.; Pediatrics, School of MedicineThiol-NO adducts such as S-nitrosoglutathione (GSNO) are endogenous bronchodilators in human airways. Decreased airway S-nitrosothiol concentrations are associated with asthma. Nitric oxide (NO), a breakdown product of GSNO, is measured in exhaled breath as a biomarker in asthma; an elevated fraction of expired NO (FENO) is associated with asthmatic airway inflammation. We hypothesized that FENO could reflect airway S-nitrosothiol concentrations. To test this hypothesis, we first studied the relationship between mixed expired NO and airway S-nitrosothiols in patients endotracheally intubated for respiratory failure. The inverse (Lineweaver-Burke type) relationship suggested that expired NO could reflect the rate of pulmonary S-nitrosothiol breakdown. We thus studied NO evolution from the lungs of mice (GSNO reductase -/-) unable reductively to catabolize GSNO. More NO was produced from GSNO in the -/- compared to wild type lungs. Finally, we formally tested the hypothesis that airway GSNO increases FENO using an inhalational challenge model in normal human subjects. FENO increased in all subjects tested, with a median t1/2 of 32.0 min. Taken together, these data demonstrate that FENO reports, at least in part, GSNO breakdown in the lungs. Unlike GSNO, NO is not present in the lungs in physiologically relevant concentrations. However, FENO following a GSNO challenge could be a non-invasive test for airway GSNO catabolism.Item Androgen regulation of pulmonary AR, TMPRSS2 and ACE2 with implications for sex-discordant COVID-19 outcomes(Nature, 2021-05-27) Baratchian, Mehdi; McManus, Jeffrey M.; Berk, Mike P.; Nakamura, Fumihiko; Mukhopadhyay, Sanjay; Xu, Weiling; Erzurum, Serpil; Drazba, Judy; Peterson, John; Klein, Eric A.; Gaston, Benjamin; Sharifi, Nima; Pediatrics, School of MedicineThe sex discordance in COVID-19 outcomes has been widely recognized, with males generally faring worse than females and a potential link to sex steroids. A plausible mechanism is androgen-induced expression of TMPRSS2 and/or ACE2 in pulmonary tissues that may increase susceptibility or severity in males. This hypothesis is the subject of several clinical trials of anti-androgen therapies around the world. Here, we investigated the sex-associated TMPRSS2 and ACE2 expression in human and mouse lungs and interrogated the possibility of pharmacologic modification of their expression with anti-androgens. We found no evidence for increased TMPRSS2 expression in the lungs of males compared to females in humans or mice. Furthermore, in male mice, treatment with the androgen receptor antagonist enzalutamide did not decrease pulmonary TMPRSS2. On the other hand, ACE2 and AR expression was sexually dimorphic and higher in males than females. ACE2 was moderately suppressible with enzalutamide administration. Our work suggests that sex differences in COVID-19 outcomes attributable to viral entry are independent of TMPRSS2. Modest changes in ACE2 could account for some of the sex discordance.Item Antigen stasis and airway nitrosative stress in human primary ciliary dyskinesia(American Physiological Society, 2024) Gaston, Benjamin; Smith, Laura A.; Davis, Michael D.; Saunders, Jessica; Daniels, Ivana; Horani, Amjad; Brody, Steven L.; Giddings, Olivia; Zhao, Yi; Marozkina, Nadzeya; Pediatrics, School of MedicineNasal nitric oxide (nNO) is low in most patients with primary ciliary dyskinesia (PCD). Decreased ciliary motion could lead to antigen stasis, increasing oxidant production and NO oxidation in the airways. This could both decrease gas phase NO and increase nitrosative stress. We studied primary airway epithelial cells from healthy controls (HCs) and patients with PCD with several different genotypes. We measured antigen clearance in fenestrated membranes exposed apically to the fluorescently labeled antigen Dermatophagoides pteronyssinus (Derp1-f). We immunoblotted for 3-nitrotyrosine (3-NT) and for oxidative response enzymes. We measured headspace NO above primary airway cells without and with a PCD-causing genotype. We measured nNO and exhaled breath condensate (EBC) H2O2 in vivo. Apical Derp1-f was cleared from HC better than from PCD cells. DUOX1 expression was lower in HC than in PCD cells at baseline and after 24-h Derp1-f exposure. HC cells had less 3-NT and NO3- than PCD cells. However, NO consumption by HC cells was less than that by PCD cells; NO loss was prevented by superoxide dismutase (SOD) and by apocynin. nNO was higher in HCs than in patients with PCD. EBC H2O2 was lower in HC than in patients with PCD. The PCD airway epithelium does not optimally clear antigens and is subject to oxidative and nitrosative stress. Oxidation associated with antigen stasis could represent a therapeutic target in PCD, one with convenient monitoring biomarkers. NEW & NOTEWORTHY: The PCD airway epithelium does not optimally clear antigens, and antigen exposure can lead to NO oxidation and nitrosative stress. Oxidation caused by antigen stasis could represent a therapeutic target in PCD, and there are convenient monitoring biomarkers.Item Association Between Asthma and Reduced Androgen Receptor Expression in Airways(Endocrine Society, 2022-03-21) McManus, Jeffrey M.; Gaston, Benjamin; Zein, Joe; Sharifi, Nima; Pediatrics, School of MedicineA growing body of evidence suggests a role for androgens in asthma and asthma control. This includes a sex discordance in disease rates that changes with puberty, experiments in mice showing androgens reduce airway inflammation, and a reported association between airway androgen receptor (AR) expression and disease severity in asthma patients. We set out to determine whether airway AR expression differs between asthma patients and healthy controls. We analyzed data from 8 publicly available data sets with gene expression profiling from airway epithelial cells obtained both from asthma patients and control individuals. We found that airway AR expression was lower in asthma patients than in controls in both sexes, and that having AR expression below the median in the pooled data set was associated with substantially elevated odds of asthma vs having AR expression above the median (odds ratio 4.89; 95% CI, 3.13-7.65, P < .0001). In addition, our results suggest that whereas the association between asthma and AR expression is present in both sexes in most of the age range analyzed, the association may be absent in prepubescent children and postmenopausal women. Our results add to the existing body of evidence suggesting a role for androgens in asthma control.Item Asthma Among Children With Primary Ciliary Dyskinesia(American Medical Association, 2024-12-02) Zein, Joe; Owora, Arthur; Kim, Hyun Jo; Marozkina, Nadzeya; Gaston, Benjamin; Pediatrics, School of MedicineItem Asthma Risk Among Individuals With Androgen Receptor Deficiency(American Medical Association, 2021) Gaston, Benjamin; Marozkina, Nadzeya; Newcomb, Dawn C.; Sharifi, Nima; Zein, Joe; Pediatrics, School of MedicineThis study investigates whether androgen receptor deficiency is associated with increased asthma risk.Item Benefits of Airway Androgen Receptor Expression in Human Asthma(American Thoracic Society, 2021) Zein, Joe G.; McManus, Jeffrey M.; Sharifi, Nima; Erzurum, Serpil C.; Marozkina, Nadzeya; Lahm, Timothy; Giddings, Olivia; Davis, Michael D.; DeBoer, Mark D.; Comhair, Suzy A.; Bazeley, Peter; Kim, Hyun Jo; Busse, William; Calhoun, William; Castro, Mario; Chung, Kian Fan; Fahy, John V.; Israel, Elliot; Jarjour, Nizar N.; Levy, Bruce D.; Mauger, David T.; Moore, Wendy C.; Ortega, Victor E.; Peters, Michael; Bleecker, Eugene R.; Meyers, Deborah A.; Zhao, Yi; Wenzel, Sally E.; Gaston, Benjamin; Biostatistics, School of Public HealthRationale: Androgens are potentially beneficial in asthma, but AR (androgen receptor) has not been studied in human airways. Objectives: To measure whether AR and its ligands are associated with human asthma outcomes. Methods: We compared the effects of AR expression on lung function, symptom scores, and fractional exhaled nitric oxide (FeNO) in adults enrolled in SARP (Severe Asthma Research Program). The impact of sex and of androgens on asthma outcomes was also evaluated in the SARP with validation studies in the Cleveland Clinic Health System and the NHANES (U.S. National Health and Nutrition Examination Survey).Measurements and Main Results: In SARP (n = 128), AR gene expression from bronchoscopic epithelial brushings was positively associated with both FEV1/FVC ratio (R2 = 0.135, P = 0.0002) and the total Asthma Quality of Life Questionnaire score (R2 = 0.056, P = 0.016) and was negatively associated with FeNO (R2 = 0.178, P = 9.8 × 10-6) and NOS2 (nitric oxide synthase gene) expression (R2 = 0.281, P = 1.2 × 10-10). In SARP (n = 1,659), the Cleveland Clinic Health System (n = 32,527), and the NHANES (n = 2,629), women had more asthma exacerbations and emergency department visits than men. The levels of the AR ligand precursor dehydroepiandrosterone sulfate correlated positively with the FEV1 in both women and men. Conclusions: Higher bronchial AR expression and higher androgen levels are associated with better lung function, fewer symptoms, and a lower FeNO in human asthma. The role of androgens should be considered in asthma management.Item Bronchopulmonary Dysplasia and Pulmonary Hypertension. The Role of Smooth Muscle adh5(American Thoracic Society, 2021-07) Raffay, Thomas M.; Bonilla-Fernandez, Koby; Jafri, Anjum; Sopi, Ramadan B.; Smith, Laura A.; Cui, Feifei; O’Reilly, Maureen; Zhang, Rongli; Hodges, Craig A.; MacFarlane, Peter M.; Deutsch, Gail; Martin, Richard J.; Gaston, Benjamin; Pediatrics, School of MedicineBronchopulmonary dysplasia (BPD) is characterized by alveolar simplification, airway hyperreactivity, and pulmonary hypertension. In our BPD model, we have investigated the metabolism of the bronchodilator and pulmonary vasodilator GSNO (S-nitrosoglutathione). We have shown the GSNO catabolic enzyme encoded by adh5 (alcohol dehydrogenase-5), GSNO reductase, is epigenetically upregulated in hyperoxia. Here, we investigated the distribution of GSNO reductase expression in human BPD and created an animal model that recapitulates the human data. Blinded comparisons of GSNO reductase protein expression were performed in human lung tissues from infants and children with and without BPD. BPD phenotypes were evaluated in global (adh5-/-) and conditional smooth muscle (smooth muscle/adh5-/-) adh5 knockout mice. GSNO reductase was prominently expressed in the airways and vessels of human BPD subjects. Compared with controls, expression was greater in BPD smooth muscle, particularly in vascular smooth muscle (2.4-fold; P = 0.003). The BPD mouse model of neonatal hyperoxia caused significant alveolar simplification, airway hyperreactivity, and right ventricular and vessel hypertrophy. Global adh5-/- mice were protected from all three aspects of BPD, whereas smooth muscle/adh5-/- mice were only protected from pulmonary hypertensive changes. These data suggest adh5 is required for the development of BPD. Expression in the pulmonary vasculature is relevant to the pathophysiology of BPD-associated pulmonary hypertension. GSNO-mimetic agents or GSNO reductase inhibitors, both of which are currently in clinical trials for other conditions, could be considered for further study in BPD.