- Browse by Author
Browsing by Author "Fuchs, Robyn Kimberly"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Health benefits of seated speed, resistance, and power training for an individual with spastic quadriplegic cerebral palsy: A case report(IOS Press, 2015-09-06) Gannotti, Mary E.; Fuchs, Robyn Kimberly; Roberts, Dawn E.; Hobbs, Nedda; Cannon, Ian M.; Department of Physical Therapy, School of Health and Rehabilitation SciencesChildren with moderate to severe cerebral palsy are at risk for low bone mass for chronological age, which compounds risk in adulthood for progressive deformity and chronic pain. Physical activity and exercise can be a key component to optimizing bone health. In this case report we present a young adult male with non-ambulatory, spastic quadriplegia CP whom began a seated speed, resistance, and power training exercise program at age 14.5 years. Exercise program continued into adulthood as part of an active lifestyle. The individual had a history of failure to thrive, bowel and bladder incontinence, reduced bone mineral density (BMD) for age, and spinal deformity at the time exercise was initiated. Participation in the exercise program began once a week for 1.5-2 hours/session, and progressed to 3-5 times per week after two years. This exercise program is now a component of his habitual lifestyle. Over the 6 years he was followed, lumbar spine and total hip BMD Z-scores did not worsen, which may be viewed as a positive outcome given his level of gross motor impairment. Additionally, the individual reported less back pain, improved bowel and bladder control, increased energy level, and never sustained an exercise related injury. Findings from this case report suggest a regular program of seated speed, resistance, power training may promote overall well-being, are safe, and should be considered as a mechanism for optimizing bone health.Item Translational studies into the effects of exercise on estimated bone strength(2015-08-05) Weatherholt, Alyssa Marie; Warden, Stuart J.; Mikesky, Alan E.; Fuchs, Robyn Kimberly; Egan, Kara AnnmarieMechanical loading associated with exercise is known to benefit bone health; however, most studies explore exercise benefits on bone mass independent of bone structure and strength. The purpose of this dissertation is to explore the response of the skeleton to exercise across the translational divide between animal- and human-based studies, with a particular emphasis on exercise-induced changes in bone structure and estimated strength. To explore the skeletal benefits of exercise, models were used wherein loading is introduced unilaterally to one extremity. Unilateral exercise enables the contralateral, non-exercised extremity to be used as an internal control site for the influences of systemic factors, such as genetics and circulating hormones. In study 1, a dose response between load magnitude and tibial midshaft cortical bone adaptation was observed in mice that had their right tibia loaded in axial compression at one of three load magnitudes for 3 d/wk over 4 weeks. In study 2, the ability of peripheral quantitative computed tomography to provide very good prediction of midshaft humerus mechanical properties with good short-term precision in human subjects was demonstrated. In study 3, collegiate-level jumping (long and/or high jump) athletes were shown to have larger side-to-side differences in tibial midshaft structure and estimated strength between their jump and lead legs than observed in non-jumping athletes. In study 4, prepubertal baseball players followed for 12 months were shown to gain more bone mass, structure and estimated strength in their throwing arm relative to their nonthrowing arm over the course of 12 months. These cumulative data using a combination of experimental models ranging from animal to cross-sectional and longitudinal human models demonstrate the ability of the skeleton to adapt its structure and estimated strength to the mechanical loading associated with exercise. Study of these models in future work may aid in optimizing skeletal responses to exercise.