- Browse by Author
Browsing by Author "Frye, Stephen V."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item AD Informer Set: Chemical tools to facilitate Alzheimer's disease drug discovery(Wiley, 2022-04-20) Potjewyd, Frances M.; Annor-Gyamfi, Joel K.; Aubé, Jeffrey; Chu, Shaoyou; Conlon, Ivie L.; Frankowski, Kevin J.; Guduru, Shiva K.R.; Hardy, Brian P.; Hopkins, Megan D.; Kinoshita, Chizuru; Kireev, Dmitri B.; Mason, Emily R.; Moerk, Charles T.; Nwogbo, Felix; Pearce, Kenneth H.; Richardson, Timothy I.; Rogers, David A.; Soni, Disha M.; Stashko, Michael; Wang, Xiaodong; Wells, Carrow; Willson, Timothy M.; Frye, Stephen V.; Young, Jessica E.; Axtman, Alison D.; Medicine, School of MedicineIntroduction: The portfolio of novel targets to treat Alzheimer's disease (AD) has been enriched by the Accelerating Medicines Partnership Program for Alzheimer's Disease (AMP AD) program. Methods: Publicly available resources, such as literature and databases, enabled a data-driven effort to identify existing small molecule modulators for many protein products expressed by the genes nominated by AMP AD and suitable positive control compounds to be included in the set. Compounds contained within the set were manually selected and annotated with associated published, predicted, and/or experimental data. Results: We built an annotated set of 171 small molecule modulators targeting 98 unique proteins that have been nominated by AMP AD consortium members as novel targets for the treatment of AD. The majority of compounds included in the set are inhibitors. These small molecules vary in their quality and should be considered chemical tools that can be used in efforts to validate therapeutic hypotheses, but which will require further optimization. A physical copy of the AD Informer Set can be requested on the Target Enablement to Accelerate Therapy Development for Alzheimer's Disease (TREAT-AD) website. Discussion: Small molecules that enable target validation are important tools for the translation of novel hypotheses into viable therapeutic strategies for AD.Item MS0621, a novel small-molecule modulator of Ewing sarcoma chromatin accessibility, interacts with an RNA-associated macromolecular complex and influences RNA splicing(Frontiers Media, 2023-01-30) Vital, Tamara; Wali, Aminah; Butler, Kyle V.; Xiong, Yan; Foster, Joseph P., II; Marcel, Shelsa S.; McFadden, Andrew W.; Nguyen, Valerie U.; Bailey, Benton M.; Lamb, Kelsey N.; James, Lindsey I.; Frye, Stephen V.; Mosely, Amber L.; Jin, Jian; Pattenden, Samantha G.; Davis, Ian J.; Biochemistry and Molecular Biology, School of MedicineEwing sarcoma is a cancer of children and young adults characterized by the critical translocation-associated fusion oncoprotein EWSR1::FLI1. EWSR1::FLI1 targets characteristic genetic loci where it mediates aberrant chromatin and the establishment of de novo enhancers. Ewing sarcoma thus provides a model to interrogate mechanisms underlying chromatin dysregulation in tumorigenesis. Previously, we developed a high-throughput chromatin-based screening platform based on the de novo enhancers and demonstrated its utility in identifying small molecules capable of altering chromatin accessibility. Here, we report the identification of MS0621, a molecule with previously uncharacterized mechanism of action, as a small molecule modulator of chromatin state at sites of aberrant chromatin accessibility at EWSR1::FLI1-bound loci. MS0621 suppresses cellular proliferation of Ewing sarcoma cell lines by cell cycle arrest. Proteomic studies demonstrate that MS0621 associates with EWSR1::FLI1, RNA binding and splicing proteins, as well as chromatin regulatory proteins. Surprisingly, interactions with chromatin and many RNA-binding proteins, including EWSR1::FLI1 and its known interactors, were RNA-independent. Our findings suggest that MS0621 affects EWSR1::FLI1-mediated chromatin activity by interacting with and altering the activity of RNA splicing machinery and chromatin modulating factors. Genetic modulation of these proteins similarly inhibits proliferation and alters chromatin in Ewing sarcoma cells. The use of an oncogene-associated chromatin signature as a target allows for a direct approach to screen for unrecognized modulators of epigenetic machinery and provides a framework for using chromatin-based assays for future therapeutic discovery efforts.Item Use of AD Informer Set compounds to explore validity of novel targets in Alzheimer's disease pathology(Wiley, 2022-04-12) Potjewyd, Frances M.; Annor-Gyamfi, Joel K.; Aubé, Jeffrey; Chu, Shaoyou; Conlon, Ivie L.; Frankowski, Kevin J.; Guduru, Shiva K.R.; Hardy, Brian P.; Hopkins, Megan D.; Kinoshita, Chizuru; Kireev, Dmitri B.; Mason, Emily R.; Moerk, Charles T.; Nwogbo, Felix; Pearce, Kenneth H., Jr.; Richardson, Timothy I.; Rogers, David A.; Soni, Disha M.; Stashko, Michael; Wang, Xiaodong; Wells, Carrow; Willson, Timothy M.; Frye, Stephen V.; Young, Jessica E.; Axtman, Alison D.; Medicine, School of MedicineIntroduction: A chemogenomic set of small molecules with annotated activities and implicated roles in Alzheimer's disease (AD) called the AD Informer Set was recently developed and made available to the AD research community: https://treatad.org/data-tools/ad-informer-set/. Methods: Small subsets of AD Informer Set compounds were selected for AD-relevant profiling. Nine compounds targeting proteins expressed by six AD-implicated genes prioritized for study by Target Enablement to Accelerate Therapy Development for Alzheimer's Disease (TREAT-AD) teams were selected for G-protein coupled receptor (GPCR), amyloid beta (Aβ) and tau, and pharmacokinetic (PK) studies. Four non-overlapping compounds were analyzed in microglial cytotoxicity and phagocytosis assays. Results: The nine compounds targeting CAPN2, EPHX2, MDK, MerTK/FLT3, or SYK proteins were profiled in 46 to 47 primary GPCR binding assays. Human induced pluripotent stem cell (iPSC)-derived neurons were treated with the same nine compounds and secretion of Aβ peptides (Aβ40 and Aβ42) as well as levels of phosphophorylated tau (p-tau, Thr231) and total tau (t-tau) peptides measured at two concentrations and two timepoints. Finally, CD1 mice were dosed intravenously to determine preliminary PK and/or brain-specific penetrance values for these compounds. As a final cell-based study, a non-overlapping subset of four compounds was selected based on single-concentration screening for analysis of both cytotoxicity and phagocytosis in murine and human microglia cells. Discussion: We have demonstrated the utility of the AD Informer Set in the validation of novel AD hypotheses using biochemical, cellular (primary and immortalized), and in vivo studies. The selectivity for their primary targets versus essential GPCRs in the brain was established for our compounds. Statistical changes in tau, p-tau, Aβ40, and/or Aβ42 and blood-brain barrier penetrance were observed, solidifying the utility of specific compounds for AD. Single-concentration phagocytosis results were validated as predictive of dose-response findings. These studies established workflows, validated assays, and illuminated next steps for protein targets and compounds.