- Browse by Author
Browsing by Author "Frank, Jacqueline A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Chronic Voluntary Alcohol Drinking Causes Anxiety-like Behavior, Thiamine Deficiency, and Brain Damage of Female Crossed High Alcohol Preferring Mice(Frontiers Media, 2021-03-09) Xu, Hong; Li, Hui; Liu, Dexiang; Wen, Wen; Xu, Mei; Frank, Jacqueline A.; Chen, Jing; Zhu, Haining; Grahame, Nicholas J.; Luo, Jia; Psychology, School of ScienceThe central nervous system is vulnerable to chronic alcohol abuse, and alcohol dependence is a chronically relapsing disorder which causes a variety of physical and mental disorders. Appropriate animal models are important for investigating the underlying cellular and molecular mechanisms. The crossed High Alcohol Preferring mice prefer alcohol to water when given free access. In the present study, we used female cHAP mice as a model of chronic voluntary drinking to evaluate the effects of alcohol on neurobehavioral and neuropathological changes. The female cHAP mice had free-choice access to 10% ethanol and water, while control mice had access to water alone at the age of 60-day-old. The mice were exposed to alcohol for 7 months then subjected to neurobehavioral tests including open field (OF), elevated plus maze (EPM), and Morris water maze (MWM). Results from OF and EPM tests suggested that chronic voluntary drinking caused anxiety-like behaviors. After behavior tests, mice were sacrificed, and brain tissues were processed for biochemical analyses. Alcohol altered the levels of several neurotransmitters and neurotrophic factors in the brain including gamma-Aminobutyric acid (GABA), corticotropin-releasing factor, cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor. Alcohol increased the expression of neuroinflammation markers including interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and C-C chemokine receptor 2 (CCR2). Alcohol also induced cleaved caspase-3 and glial fibrillary acidic protein, indicative of neurodegeneration and gliosis. In addition, alcohol inhibited the expression of thiamine transporters in the brain and reduced thiamine levels in the blood. Alcohol also caused oxidative stress and endoplasmic reticulum (ER) stress, and stimulated neurogenesis.Item Effects of Chronic Voluntary Alcohol Drinking on Thiamine Concentrations, Endoplasmic Reticulum Stress and Oxidative Stress in the Brain of Crossed High Alcohol Preferring Mice(Springer, 2019-11) Xu, Hong; Liu, Dexiang; Chen, Jing; Li, Hui; Xu, Mei; Wen, Wen; Frank, Jacqueline A.; Grahame, Nicholas J.; Zhu, Haining; Luo, Jia; Psychology, School of ScienceChronic alcohol drinking can damage the central nervous system via many mechanisms. One of these may involve a deficiency of an essential nutrient, thiamine, as a result of chronic alcohol exposure. Although thiamine deficiency (TD) has often been linked to the neuropathology of alcohol-related brain damage, the underlying mechanisms remain to be investigated. The crossed High Alcohol Preferring (cHAP) mice prefer alcohol to water when they have free access. In this study, we used cHAP mice to determine the effect of chronic voluntary alcohol exposure on thiamine levels and neuropathological changes in the brain. The male cHAP mice were given free-choice access to 10% ethanol (EtOH) and water for 7 months, sacrificed, and thiamine concentrations in the blood plasma and brain were determined by liquid chromatography–mass spectrometry (LC-MS). The expression of thiamine transporters was examined by immunoblotting. In addition, oxidative stress, endoplasmic reticulum (ER) stress, active caspase-3 dependent apoptosis, and neurogenesis in the brain were evaluated. The results indicated that chronic alcohol exposure decreased thiamine levels and thiamine transporters, and increased oxidative stress, ER stress, and neuronal apoptosis in the brains. Interestingly, alcohol exposure also stimulated neurogenesis in the hippocampus which may serve as a compensatory mechanism in response to alcohol-induced brain damage. Our data have demonstrated that cHAP mice are a useful model to study the interaction between chronic alcohol consumption and TD, as well as TD’s contributions to the neuropathological processes resulting in alcohol-related brain damage.