- Browse by Author
Browsing by Author "Fitz, Stephanie D."
Now showing 1 - 10 of 18
Results Per Page
Sort Options
Item Alcohol-preferring rats show decreased corticotropin-releasing hormone-2 receptor expression and differences in HPA activation compared to alcohol-nonpreferring rats(Wiley Blackwell (Blackwell Publishing), 2014-05) Yong, Weidong; Spence, John Paul; Eskay, Robert; Fitz, Stephanie D.; Damadzic, Ruslan; Lai, Dongbing; Foroud, Tatiana; Carr, Lucinda G.; Shekhar, Anantha; Chester, Julia A.; Heilig, Markus; Liang, Tiebing; Department of Medicine, IU School of MedicineBACKGROUND: Corticotropin-releasing hormone (CRH) and urocortins (UCNs) bind to corticotropin-releasing hormone type 2 receptor (CRF2 receptor ), a Gs protein-coupled receptor that plays an important role in modulation of anxiety and stress responses. The Crhr2 gene maps to a quantitative trait locus (QTL) for alcohol preference on chromosome 4 previously identified in inbred alcohol-preferring (iP) and-nonpreferring (iNP) F2 rats. METHODS: Real-time polymerase chain reaction was utilized to screen for differences in Crhr2 mRNA expression in the central nervous system (CNS) of male iP and iNP rats. DNA sequence analysis was then performed to screen for polymorphism in Crhr2 in order to identify genetic variation, and luciferase reporter assays were then applied to test their functional significance. Next, binding assays were used to determine whether this polymorphism affected CRF2 receptor binding affinity as well as CRF2 receptor density in the CNS. Finally, social interaction and corticosterone levels were measured in the P and NP rats before and after 30-minute restraint stress. RESULTS: Crhr2 mRNA expression studies found lower levels of Crhr2 mRNA in iP rats compared to iNP rats. In addition, DNA sequencing identified polymorphisms in the promoter region, coding region, and 3'-untranslated region between the iP and iNP rats. A 7 bp insertion in the Crhr2 promoter of iP rats altered expression in vitro as measured by reporter assays, and we found that CRF2 receptor density was lower in the amygdala of iP as compared to iNP rats. Male P rats displayed decreased social interaction and significantly higher corticosterone levels directly following 30-minute restraint when compared to male NP rats. CONCLUSIONS: This study identified Crhr2 as a candidate gene of interest underlying the chromosome 4 QTL for alcohol consumption that was previously identified in the P and NP model. Crhr2 promoter polymorphism is associated with reduced mRNA expression in certain brain regions, particularly the amygdala, and lowered the density of CRF2 receptor in the amygdala of iP compared to iNP rats. Together, these differences between the animals may contribute to the drinking disparity as well as the anxiety differences of the P and NP rats.Item Angiotensin-II is a putative neurotransmitter in lactate-induced panic-like responses in rats with disruption of GABAergic inhibition in the dorsomedial hypothalamus(Society for Neuroscience, 2006-09-06) Shekhar, Anantha; Johnson, Philip L.; Sajdyk, Tammy J.; Fitz, Stephanie D.; Keim, Stanley R.; Kelley, Pamela E.; Gehlert, Donald R.; DiMicco, Joseph A.; Psychiatry, School of MedicineIntravenous sodium lactate infusions or the noradrenergic agent yohimbine reliably induce panic attacks in humans with panic disorder but not in healthy controls. However, the exact mechanism of lactate eliciting a panic attack is still unknown. In rats with chronic disruption of GABA-mediated inhibition in the dorsomedial hypothalamus (DMH), achieved by chronic microinfusion of the glutamic acid decarboxylase inhibitor L-allylglycine, sodium lactate infusions or yohimbine elicits panic-like responses (i.e., anxiety, tachycardia, hypertension, and tachypnea). In the present study, previous injections of the angiotensin-II (A-II) type 1 receptor antagonist losartan and the nonspecific A-II receptor antagonist saralasin into the DMH of "panic-prone" rats blocked the anxiety-like and physiological components of lactate-induced panic-like responses. In addition, direct injections of A-II into the DMH of these panic-prone rats also elicited panic-like responses that were blocked by pretreatment with saralasin. Microinjections of saralasin into the DMH did not block the panic-like responses elicited by intravenous infusions of the noradrenergic agent yohimbine or by direct injections of NMDA into the DMH. The presence of the A-II type 1 receptors in the region of the DMH was demonstrated using immunohistochemistry. Thus, these results implicate A-II pathways and the A-II receptors in the hypothalamus as putative substrates for sodium lactate-induced panic-like responses in vulnerable subjects.Item Anxiogenic CO2 Stimulus Elicits Exacerbated Hot Flash-like Responses in a Rat Menopause Model and Hot Flashes in Menopausal Women(Lippincott, Williams & Wilkins, 2016-11) Federici, Lauren M.; Roth, Sarah Dorsey; Krier, Connie; Fitz, Stephanie D.; Skaar, Todd C.; Shekhar, Anantha; Carpenter, Janet S.; Johnson, Philip L.; Anatomy and Cell Biology, School of MedicineObjective Since longitudinal studies determined that anxiety is a strong risk factor for hot flashes, we hypothesized that an anxiogenic stimulus that signals air hunger (hypercapnic, normoxic gas) would trigger an exacerbated hot flash-associated increase in tail skin temperature (TST) in a rat ovariectomy (OVEX) model of surgical menopause and hot flashes in symptomatic menopausal women. We also assessed TST responses in OVEX serotonin transporter (SERT)+/− rats that models a common polymorphism that is associated with increased climacteric symptoms in menopausal women and increases in anxiety traits. Methods OVEX and sham-OVEX rats (initial experiment) and wildtype and SERT+/− OVEX rats (subsequent experiment) were exposed to a 5 min infusion of 20%CO2 normoxic gas while measuring TST. Menopausal women were given brief 20% and 35%CO2 challenges, and hot flashes were self-reported and objectively verified. Results Compared to controls, OVEX rats had exacerbated increases in TST, and SERT+/− OVEX rats had prolonged TST increases following CO2. Most women reported mild/moderate hot flashes after CO2 challenges, and the hot flash severity to CO2 was positively correlated with daily hot flash frequency. Conclusions The studies demonstrate that this anxiogenic stimulus is capable of inducing cutaneous vasomotor responses in OVEX rats, and eliciting hot flashes in menopausal women. In rats, the severity of the response was mediated by loss of ovarian function and increased anxiety traits (SERT+/−), and, in women, by daily hot flash frequency. These findings may provide insights into anxiety related triggers and genetic risk factors for hot flashes in thermoneutral environments.Item Assessment of fear and anxiety associated behaviors, physiology and neural circuits in rats with reduced serotonin transporter (SERT) levels(Springer Nature, 2019-01-22) Johnson, Philip L.; Molosh, Andrei I.; Federici, Lauren M.; Bernabe, Cristian; Haggerty, David; Fitz, Stephanie D.; Nalivaiko, Eugene; Truitt, William; Shekhar, Anantha; Anatomy and Cell Biology, IU School of MedicineGenetic variation in serotonin transporter (SERT) that reduces transcriptional efficiency is associated with higher anxiety and fear traits and a greater incidence of post traumatic stress disorder (PTSD). Although previous studies have shown that rats with no expression of SERT (SERT-/-) have increased baseline anxiety behaviors, SERT+/- rats with low SERT expression (and more relevant to the clinical condition with low SERT expression) do not. Yet, no systematic studies of fear acquisition/extinction or their underlying neural mechanisms have been conducted in this preclinical genetic SERT+/- model. Here we sought to determine if SERT+/- or SERT-/-, compared to wildtype, rats would show exacerbated panic responses and/or persistent conditioned fear responses that may be associated with PTSD or phobia vulnerability. Results: Only SERT-/- rats showed increased baseline anxiety-like behaviors with heightened panic respiratory responses. However SERT+/- (also SERT-/-) rats showed enhanced acquisition of fear and delayed extinction of fear that was associated with changes in serotonergic-related genes (e.g., reduced 5-HT1A receptor) and disrupted inhibition within the basolateral amygdala (BLA). Furthermore, the disrupted fear responses in SERT+/- rats were normalized with 5HT1A antagonist infusions into the BLA. Enhanced acquisition and failure to extinguish fear memories displayed by both SERT-/- and SERT+/- rats are cardinal symptoms of disabling anxiety disorders such as phobias and PTSD. The data here support the hypothesis that reduced SERT function is a genetic risk that disrupts select gene expression and network properties in the amygdala that could result in vulnerability to these syndromes.Item Crh receptor priming in the bed nucleus of the stria terminalis induces tph2 gene expression in the dorsomedial dorsal raphe nucleus and chronic anxiety(Elsevier, 2020-01-10) Donner, Nina C.; Mani, Sofia; Fitz, Stephanie D.; Kienzle, Drake M.; Shekhar, Anantha; Lowry, Christopher A.; Psychiatry, School of MedicineThe bed nucleus of the stria terminalis (BNST) is a nodal structure in neural circuits controlling anxiety-related defensive behavioral responses. It contains neurons expressing the stress- and anxiety-related neuropeptide corticotropin-releasing hormone (Crh) as well as Crh receptors. Repeated daily subthreshold activation of Crh receptors in the BNST is known to induce a chronic anxiety-like state, but how this affects neurotransmitter-relevant gene expression in target regions of the BNST is still unclear. Since the BNST projects heavily to the dorsal raphe nucleus (DR), the main source of brain serotonin, we here tested the hypothesis that such repeated, anxiety-inducing activation of Crh receptors in the BNST alters the expression of serotonergic genes in the DR, including tph2, the gene encoding the rate-limiting enzyme for brain serotonin synthesis, and slc6a4, the gene encoding the serotonin transporter (SERT). For 5 days, adult male Wistar rats received daily, bilateral, intra-BNST microinjections of vehicle (1% bovine serum albumin in 0.9% saline, n = 11) or behaviorally subthreshold doses of urocortin 1 (Ucn1, n = 11), a potent Crh receptor agonist. Priming with Ucn1 increased tph2 mRNA expression selectively within the anxiety-related dorsal part of the DR (DRD) and decreased social interaction (SI) time, a measure of anxiety-related defensive behavioral responses in rodents. Decreased social interaction was strongly correlated with increased tph2 mRNA expression in the DRD. Together with previous studies, our data are consistent with the hypothesis that Crh-mediated control of the BNST/DRD-serotonergic system plays a key role in the development of chronic anxiety states, possibly also contributing to stress-induced relapses in drug abuse and addiction behavior.Item Electroacupuncture Promotes Central Nervous System-Dependent Release of Mesenchymal Stem Cells(Wiley, 2017-05) Salazar, Tatiana E.; Richardson, Matthew R.; Beli, Eleni; Ripsch, Matthew S.; George, John; Kim, Youngsook; Duan, Yaqian; Moldovan, Leni; Yan, Yuanqing; Bhatwadekar, Ashay; Jadhav, Vaishnavi; Smith, Jared A.; McGorray, Susan; Bertone, Alicia L.; Traktuev, Dmitri O.; March, Keith L.; Colon-Perez, Luis M.; Avin, Keith; Sims, Emily; Mund, Julie A.; Case, Jamie; Deng, Shaolin; Kim, Min Su; McDavitt, Bruce; Boulton, Michael E.; Thinschmidt, Jeffrey; Calzi, Sergio Li; Fitz, Stephanie D.; Fuchs, Robyn K.; Warden, Stuart J.; McKinley, Todd; Shekhar, Anantha; Febo, Marcelo; Johnson, Phillip L.; Chang, Lung Ji; Gao, Zhanguo; Kolonin, Mikhail G.; Lai, Song; Ma, Jinfeng; Dong, Xinzhong; White, Fletcher A.; Xie, Huisheng; Yoder, Mervin C.; Grant, Maria B.; Ophthalmology, School of MedicineElectroacupuncture (EA) performed in rats and humans using limb acupuncture sites, LI-4 and LI-11, and GV-14 and GV-20 (humans) and Bai-hui (rats) increased functional connectivity between the anterior hypothalamus and the amygdala and mobilized mesenchymal stem cells (MSCs) into the systemic circulation. In human subjects, the source of the MSC was found to be primarily adipose tissue, whereas in rodents the tissue sources were considered more heterogeneous. Pharmacological disinhibition of rat hypothalamus enhanced sympathetic nervous system (SNS) activation and similarly resulted in a release of MSC into the circulation. EA-mediated SNS activation was further supported by browning of white adipose tissue in rats. EA treatment of rats undergoing partial rupture of the Achilles tendon resulted in reduced mechanical hyperalgesia, increased serum interleukin-10 levels and tendon remodeling, effects blocked in propranolol-treated rodents. To distinguish the afferent role of the peripheral nervous system, phosphoinositide-interacting regulator of transient receptor potential channels (Pirt)-GCaMP3 (genetically encoded calcium sensor) mice were treated with EA acupuncture points, ST-36 and LIV-3, and GV-14 and Bai-hui and resulted in a rapid activation of primary sensory neurons. EA activated sensory ganglia and SNS centers to mediate the release of MSC that can enhance tissue repair, increase anti-inflammatory cytokine production and provide pronounced analgesic relief.Item Elevated tph2 mRNA expression in a rat model of chronic anxiety(Wiley, 2012-04) Donner, Nina C.; Johnson, Philip L.; Fitz, Stephanie D.; Kellen, Karen E.; Shekhar, Anantha; Lowry, Christopher A.; Psychiatry, School of MedicineBACKGROUND: Allelic variations in TPH2, the gene encoding tryptophan hydroxylase 2, the rate-limiting enzyme for brain serotonin (5-HT) biosynthesis, may be genetic predictors of panic disorder and panic responses to panicogenic challenges in healthy volunteers. To test the hypothesis that tph2 mRNA is altered in chronic anxiety states, we measured tph2 expression in an established rat model of panic disorder. METHODS: We implanted 16 adult, male rats with bilateral guide cannulae and then primed them with daily injections of the corticotropin-releasing factor (CRF) receptor agonist, urocortin 1 (UCN1, 6 fmoles/100 nl per side, n = 8) or vehicle (n = 8) into the basolateral amygdaloid complex (BL) for 5 consecutive days. Anxiety-like behavior was assessed, 24 hr prior to and 48 hr following priming, in the social interaction (SI) test. A third group (n = 7) served as undisturbed home cage controls. All rats were killed 3 days after the last intra-BL injection to analyze tph2 and slc6a4 (gene encoding the serotonin transporter, SERT) mRNA expression in the dorsal raphe nucleus (DR), the main source of serotonergic projections to anxiety-related brain regions, using in situ hybridization histochemistry. RESULTS: UCN1 priming increased anxiety-related behavior in the SI test compared to vehicle-injected controls and elevated tph2, but not slc6a4, mRNA expression in DR subregions, including the ventrolateral DR/ventrolateral periaqueductal gray (DRVL/VLPAG), a subregion previously implicated in control of panic-related physiologic responses. Tph2 mRNA expression in the DRVL/VLPAG was correlated with increased anxiety-related behavior. CONCLUSION: Our data support the hypothesis that chronic anxiety states are associated with dysregulated tph2 expression.Item Evaluation of JNJ-54717793 a Novel Brain Penetrant Selective Orexin 1 Receptor Antagonist in Two Rat Models of Panic Attack Provocation(Frontiers, 2017-06-09) Bonaventure, Pascal; Dugovic, Christine; Shireman, Brock; Preville, Cathy; Yun, Sujin; Lord, Brian; Nepomuceno, Diane; Wennerholm, Michelle; Lovenberg, Timothy; Carruthers, Nicolas; Fitz, Stephanie D.; Shekhar, Anantha; Johnson, Philip L.; Psychiatry, School of MedicineOrexin neurons originating in the perifornical and lateral hypothalamic area are highly reactive to anxiogenic stimuli and have strong projections to anxiety and panic-associated circuitry. Recent studies support a role for the orexin system and in particular the orexin 1 receptor (OX1R) in coordinating an integrative stress response. However, no selective OX1R antagonist has been systematically tested in two preclinical models of using panicogenic stimuli that induce panic attack in the majority of people with panic disorder, namely an acute hypercapnia-panic provocation model and a model involving chronic inhibition of GABA synthesis in the perifornical hypothalamic area followed by intravenous sodium lactate infusion. Here we report on a novel brain penetrant, selective and high affinity OX1R antagonist JNJ-54717793 (1S,2R,4R)-7-([(3-fluoro-2-pyrimidin-2-ylphenyl)carbonyl]-N-[5-(trifluoromethyl)pyrazin-2-yl]-7-azabicyclo[2.2.1]heptan-2-amine). JNJ-54717793 is a high affinity/potent OX1R antagonist and has an excellent selectivity profile including 50 fold versus the OX2R. Ex vivo receptor binding studies demonstrated that after oral administration JNJ-54717793 crossed the blood brain barrier and occupied OX1Rs in the rat brain. While JNJ-54717793 had minimal effect on spontaneous sleep in rats and in wild-type mice, its administration in OX2R knockout mice, selectively promoted rapid eye movement sleep, demonstrating target engagement and specific OX1R blockade. JNJ-54717793 attenuated CO2 and sodium lactate induced panic-like behaviors and cardiovascular responses without altering baseline locomotor or autonomic activity. These data confirm that selective OX1R antagonism may represent a novel approach of treating anxiety disorders, with no apparent sedative effects.Item Evaluation of Low versus High Volume per Minute Displacement CO₂ Methods of Euthanasia in the Induction and Duration of Panic-Associated Behavior and Physiology(MDPI, 2016-08) Hickman, Debra L.; Fitz, Stephanie D.; Bernabe, Cristian S.; Caliman, Izabela F.; Haulcomb, Melissa M.; Federici, Lauren M.; Shekhar, Anatatha; Johnson, Philip L.; Department of Cellular & Integrative Physiology, IU School of MedicineCurrent recommendations for the use of CO ₂ as a euthanasia agent for rats require the use of gradual fill protocols (such as 10% to 30% volume displacement per minute) in order to render the animal insensible prior to exposure to levels of CO ₂ that are associated with pain. However, exposing rats to CO ₂ , concentrations as low as 7% CO ₂ are reported to cause distress and 10%-20% CO ₂ induces panic-associated behavior and physiology, but loss of consciousness does not occur until CO ₂ concentrations are at least 40%. This suggests that the use of the currently recommended low flow volume per minute displacement rates create a situation where rats are exposed to concentrations of CO ₂ that induce anxiety, panic, and distress for prolonged periods of time. This study first characterized the response of male rats exposed to normoxic 20% CO ₂ for a prolonged period of time as compared to room air controls. It demonstrated that rats exposed to this experimental condition displayed clinical signs consistent with significantly increased panic-associated behavior and physiology during CO ₂ exposure. When atmospheric air was then again delivered, there was a robust increase in respiration rate that coincided with rats moving to the air intake. The rats exposed to CO ₂ also displayed behaviors consistent with increased anxiety in the behavioral testing that followed the exposure. Next, this study assessed the behavioral and physiologic responses of rats that were euthanized with 100% CO ₂ infused at 10%, 30%, or 100% volume per minute displacement rates. Analysis of the concentrations of CO ₂ and oxygen in the euthanasia chamber and the behavioral responses of the rats suggest that the use of the very low flow volume per minute displacement rate (10%) may prolong the duration of panicogenic ranges of ambient CO ₂ , while the use of the higher flow volume per minute displacement rate (100%) increases agitation. Therefore, of the volume displacement per minute rates evaluated, this study suggests that 30% minimizes the potential pain and distress experienced by the animal.Item Group II metabotropic glutamate receptor type 2 allosteric potentiators prevent sodium lactate-induced panic-like response in panic-vulnerable rats(Sage Publications, 2013-02) Johnson, Philip L.; Fitz, Stephanie D.; Engleman, Eric A.; Svensson, Kjell A.; Schkeryantz, Jeffrey M.; Shekhar, Anantha; Department of Anatomy and Cell Biology, IU School of MedicineRats with chronic inhibition of GABA synthesis by infusion of l-allyglycine, a glutamic acid decarboxylase inhibitor, into their dorsomedial/perifornical hypothalamus are anxious and exhibit panic-like cardio-respiratory responses to treatment with intravenous (i.v.) sodium lactate (NaLac) infusions, in a manner similar to what occurs in patients with panic disorder. We previously showed that either NMDA receptor antagonists or metabotropic glutamate receptor type 2/3 receptor agonists can block such a NaLac response, suggesting that a glutamate mechanism is contributing to this panic-like state. Using this animal model of panic, we tested the efficacy of CBiPES and THIIC, which are selective group II metabotropic glutamate type 2 receptor allosteric potentiators (at 10-30 mg/kg i.p.), in preventing NaLac-induced panic-like behavioral and cardiovascular responses. The positive control was alprazolam (3mg/kg i.p.), a clinically effective anti-panic benzodiazepine. As predicted, panic-prone rats given a NaLac challenge displayed NaLac-induced panic-like cardiovascular (i.e. tachycardia and hypertensive) responses and "anxiety" (i.e. decreased social interaction time) and "flight" (i.e. increased locomotion) -associated behaviors; however, systemic injection of the panic-prone rats with CBiPES, THIIC or alprazolam prior to the NaLac dose blocked all NaLac-induced panic-like behaviors and cardiovascular responses. These data suggested that in a rat animal model, selective group II metabotropic glutamate type 2 receptor allosteric potentiators show an anti-panic efficacy similar to alprazolam.