ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Fisher, Amanda J."

Now showing 1 - 10 of 15
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    17β-Estradiol mediates superior adaptation of right ventricular function to acute strenuous exercise in female rats with severe pulmonary hypertension
    (APS Journals, 2016-08-01) Lahm, Tim; Frump, Andrea L.; Albrecht, Marjorie E.; Fisher, Amanda J.; Cook, Todd G.; Jones, Thomas J.; Yakubov, Bakhtiyor; Whitson, Jordan; Fuchs, Robyn K.; Liu, Aiping; Chesler, Naomi C.; Brown, M. Beth; Medicine, School of Medicine
    17β-Estradiol (E2) exerts protective effects on right ventricular (RV) function in pulmonary arterial hypertension (PAH). Since acute exercise-induced increases in afterload may lead to RV dysfunction in PAH, we sought to determine whether E2 allows for superior RV adaptation after an acute exercise challenge. We studied echocardiographic, hemodynamic, structural, and biochemical markers of RV function in male and female rats with sugen/hypoxia (SuHx)-induced pulmonary hypertension, as well as in ovariectomized (OVX) SuHx females, with or without concomitant E2 repletion (75 μg·kg−1·day−1) immediately after 45 min of treadmill running at 75% of individually determined maximal aerobic capacity (75% aerobic capacity reserve). Compared with males, intact female rats exhibited higher stroke volume and cardiac indexes, a strong trend for better RV compliance, and less pronounced increases in indexed total pulmonary resistance. OVX abrogated favorable RV adaptations, whereas E2 repletion after OVX markedly improved RV function. E2's effects on pulmonary vascular remodeling were complex and less robust than its RV effects. Postexercise hemodynamics in females with endogenous or exogenous E2 were similar to hemodynamics in nonexercised controls, whereas OVX rats exhibited more severely altered postexercise hemodynamics. E2 mediated inhibitory effects on RV fibrosis and attenuated increases in RV collagen I/III ratio. Proapoptotic signaling, endothelial nitric oxide synthase phosphorylation, and autophagic flux markers were affected by E2 depletion and/or repletion. Markers of impaired autophagic flux correlated with endpoints of RV structure and function. Endogenous and exogenous E2 exerts protective effects on RV function measured immediately after an acute exercise challenge. Harnessing E2's mechanisms may lead to novel RV-directed therapies.
  • Loading...
    Thumbnail Image
    Item
    Allergic Airway Disease in Mice Alters T and B Cell Responses during an Acute Respiratory Poxvirus Infection
    (Public Library of Science, 2013-04-19) Walline, Crystal C.; Sehra, Sarita; Fisher, Amanda J.; Guindon, Lynette M.; Kratzke, Ian M.; Montgomery, Jessica B.; Lipking, Kelsey P.; Glosson, Nicole L.; Benson, Heather L.; Sandusky, George E.; Wilkes, David S.; Brutkiewicz, Randy R.; Kaplan, Mark H.; Blum, Janice S.; Microbiology and Immunology, School of Medicine
    Pulmonary viral infections can exacerbate or trigger the development of allergic airway diseases via multiple mechanisms depending upon the infectious agent. Respiratory vaccinia virus transmission is well established, yet the effects of allergic airway disease on the host response to intra-pulmonary vaccinia virus infection remain poorly defined. As shown here BALB/c mice with preexisting airway disease infected with vaccinia virus developed more severe pulmonary inflammation, higher lung virus titers and greater weight loss compared with mice inoculated with virus alone. This enhanced viremia was observed despite increased pulmonary recruitment of CD8(+) T effectors, greater IFNγ production in the lung, and high serum levels of anti-viral antibodies. Notably, flow cytometric analyses of lung CD8(+) T cells revealed a shift in the hierarchy of immunodominant viral epitopes in virus inoculated mice with allergic airway disease compared to mice treated with virus only. Pulmonary IL-10 production by T cells and antigen presenting cells was detected following virus inoculation of animals and increased dramatically in allergic mice exposed to virus. IL-10 modulation of host responses to this respiratory virus infection was greatly influenced by the localized pulmonary microenvironment. Thus, blocking IL-10 signaling in virus-infected mice with allergic airway disease enhanced pulmonary CD4(+) T cell production of IFNγ and increased serum anti-viral IgG1 levels. In contrast, pulmonary IFNγ and virus-specific IgG1 levels were reduced in vaccinia virus-treated mice with IL-10 receptor blockade. These observations demonstrate that pre-existing allergic lung disease alters the quality and magnitude of immune responses to respiratory poxviruses through an IL-10-dependent mechanism.
  • Loading...
    Thumbnail Image
    Item
    Contribution of the anaphylatoxin receptors, C3aR and C5aR, to the pathogenesis of pulmonary fibrosis
    (Federation of American Societies for Experimental Biology, 2016-06) Gu, Hongmei; Fisher, Amanda J.; Mickler, Elizabeth A.; Duerson, Frank, III; Cummings, Oscar W.; Peters-Golden, Marc; Twigg, Homer L., III; Woodruff, Trent M.; Wilkes, David S.; Vittal, Ragini; Medicine, School of Medicine
    Complement activation, an integral arm of innate immunity, may be the critical link to the pathogenesis of idiopathic pulmonary fibrosis (IPF). Whereas we have previously reported elevated anaphylatoxins-complement component 3a (C3a) and complement component 5a (C5a)-in IPF, which interact with TGF-β and augment epithelial injury in vitro, their role in IPF pathogenesis remains unclear. The objective of the current study is to determine the mechanistic role of the binding of C3a/C5a to their respective receptors (C3aR and C5aR) in the progression of lung fibrosis. In normal primary human fetal lung fibroblasts, C3a and C5a induces mesenchymal activation, matrix synthesis, and the expression of their respective receptors. We investigated the role of C3aR and C5aR in lung fibrosis by using bleomycin-injured mice with fibrotic lungs, elevated local C3a and C5a, and overexpression of their receptors via pharmacologic and RNA interference interventions. Histopathologic examination revealed an arrest in disease progression and attenuated lung collagen deposition (Masson's trichrome, hydroxyproline, collagen type I α 1 chain, and collagen type I α 2 chain). Pharmacologic or RNA interference-specific interventions suppressed complement activation (C3a and C5a) and soluble terminal complement complex formation (C5b-9) locally and active TGF-β1 systemically. C3aR/C5aR antagonists suppressed local mRNA expressions of tgfb2, tgfbr1/2, ltbp1/2, serpine1, tsp1, bmp1/4, pdgfbb, igf1, but restored the proteoglycan, dcn Clinically, compared with pathologically normal human subjects, patients with IPF presented local induction of C5aR, local and systemic induction of soluble C5b-9, and amplified expression of C3aR/C5aR in lesions. The blockade of C3aR and C5aR arrested the progression of fibrosis by attenuating local complement activation and TGF-β/bone morphologic protein signaling as well as restoring decorin, which suggests a promising therapeutic strategy for patients with IPF.-Gu, H., Fisher, A. J., Mickler, E. A., Duerson, F., III, Cummings, O. W., Peters-Golden, M., Twigg, H. L., III, Woodruff, T. M., Wilkes, D. S., Vittal, R. Contribution of the anaphylatoxin receptors, C3aR and C5aR, to the pathogenesis of pulmonary fibrosis.
  • Loading...
    Thumbnail Image
    Item
    Effect of estrogen receptor α on cardiopulmonary adaptation to chronic developmental hypoxia in a rat model
    (American Physiological Society, 2024) Severyn, Nicholas T.; Esparza, Patricia; Gao, Huanling; Mickler, Elizabeth A.; Albrecht, Marjorie E.; Fisher, Amanda J.; Yakubov, Bahktiyor; Cook, Todd G.; Slaven, James E.; Walts, Avram D.; Tepper, Robert S.; Lahm, Tim; Pediatrics, School of Medicine
    Humans living at high-altitude (HA) have adapted to this environment by increasing pulmonary vascular and alveolar growth. RNA sequencing data from a novel murine model that mimics this phenotypical response to HA suggested estrogen signaling via estrogen receptor alpha (ERα) may be involved in this adaptation. We hypothesized ERα was a key mediator in the cardiopulmonary adaptation to chronic hypoxia and sought to delineate the mechanistic role ERα contributes to this process by exposing novel loss-of-function ERα mutant (ERαMut) rats to simulated HA. ERα mutant or wild-type (wt) rats were exposed to normoxia or hypoxia starting at conception and continued postnatally until 6 wk of age. Both wt and ERαMut animals born and raised in hypoxia exhibited lower body mass and higher hematocrits, total alveolar volumes (Va), diffusion capacities of carbon monoxide (DLCO), pulmonary arteriole (PA) wall thickness, and Fulton indices than normoxia animals. Right ventricle adaptation was maintained in the setting of hypoxia. Although no major physiologic differences were seen between wt and ERαMut animals at either exposure, ERαMut animals exhibited smaller mean linear intercepts (MLI) and increased PA total and lumen areas. Hypoxia exposure or ERα loss-of-function did not affect lung mRNA abundance of vascular endothelial growth factor, angiopoietin 2, or apelin. Sexual dimorphisms were noted in PA wall thickness and PA lumen area in ERαMut rats. In summary, in room air-exposed rats and rats with peri- and postnatal hypoxia exposure, ERα loss-of-function was associated with decreased alveolar size (primarily driven by hypoxic animals) and increased PA remodeling. NEW & NOTEWORTHY: By exposing novel loss-of-function estrogen receptor alpha (Erα) mutant rats to a novel model of human high-altitude exposure, we demonstrate that ERα has subtle but inconsistent effects on endpoints relevant to cardiopulmonary adaptation to chronic hypoxia. Given that we observed some histologic, sex, and genotype differences, further research into cell-specific effects of ERα during hypoxia-induced cardiopulmonary adaptation is warranted.
  • Loading...
    Thumbnail Image
    Item
    High-intensity interval training, but not continuous training, reverses right ventricular hypertrophy and dysfunction in a rat model of pulmonary hypertension
    (APS, 2017) Brown, Mary Beth; Neves, Evandro; Long, Gary; Graber, Jeremy; Gladish, Brett; Wiseman, Andrew; Owens, Matthew; Fisher, Amanda J.; Presson, Robert G.; Petrache, Irina; Kline, Jeffrey A.; Lahm, Tim; Department of Physical Therapy, School of Health and Rehabilitation Sciences
    Exercise is beneficial in pulmonary arterial hypertension (PAH), although studies to date indicate little effect on the elevated pulmonary pressures or maladaptive right ventricle (RV) hypertrophy associated with the disease. For chronic left ventricle failure, high-intensity interval training (HIIT) promotes greater endothelial stimulation and superior benefit than customary continuous exercise training (CExT); however, HIIT has not been tested for PAH. Therefore, here we investigated acute and chronic responses to HIIT vs. CExT in a rat model of monocrotaline (MCT)-induced mild PAH. Six weeks of treadmill training (5 times/wk) were performed, as either 30 min HIIT or 60 min low-intensity CExT. To characterize acute hemodynamic responses to the two approaches, novel recordings of simultaneous pulmonary and systemic pressures during running were obtained at pre- and 2, 4, 6, and 8 wk post-MCT using long-term implantable telemetry. MCT-induced decrement in maximal aerobic capacity was ameliorated by both HIIT and CExT, with less pronounced pulmonary vascular remodeling and no increase in RV inflammation or apoptosis observed. Most importantly, only HIIT lowered RV systolic pressure, RV hypertrophy, and total pulmonary resistance, and prompted higher cardiac index that was complemented by a RV increase in the positive inotrope apelin and reduced fibrosis. HIIT prompted a markedly pulsatile pulmonary pressure during running and was associated with greater lung endothelial nitric oxide synthase after 6 wk. We conclude that HIIT may be superior to CExT for improving hemodynamics and maladaptive RV hypertrophy in PAH. HIIT’s superior outcomes may be explained by more favorable pulmonary vascular endothelial adaptation to the pulsatile HIIT stimulus.
  • Loading...
    Thumbnail Image
    Item
    The HMGB1-RAGE axis mediates traumatic brain injury-induced pulmonary dysfunction in lung transplantation
    (American Association for the Advancement of Science, 2014-09-03) Weber, Daniel J.; Gracon, Adam S.A.; Ripsch, Matthew S.; Fisher, Amanda J.; Cheon, Bo M.; Pandya, Pankita H.; Vittal, Ragini; Capitano, Maegan L.; Kim, Youngsong; Allete, Yohance M.; Riley, Amanda A.; McCarthy, Brian P.; Territo, Paul R.; Hutchins, Gary D.; Broxmeyer, Hal E.; Sandusky, George E.; White, Fletcher A.; Wilkes, David S.; Medicine, School of Medicine
    Traumatic brain injury (TBI) results in systemic inflammatory responses that affect the lung. This is especially critical in the setting of lung transplantation, where more than half of donor allografts are obtained postmortem from individuals with TBI. The mechanism by which TBI causes pulmonary dysfunction remains unclear but may involve the interaction of high-mobility group box-1 (HMGB1) protein with the receptor for advanced glycation end products (RAGE). To investigate the role of HMGB1 and RAGE in TBI-induced lung dysfunction, RAGE-sufficient (wild-type) or RAGE-deficient (RAGE(-/-)) C57BL/6 mice were subjected to TBI through controlled cortical impact and studied for cardiopulmonary injury. Compared to control animals, TBI induced systemic hypoxia, acute lung injury, pulmonary neutrophilia, and decreased compliance (a measure of the lungs' ability to expand), all of which were attenuated in RAGE(-/-) mice. Neutralizing systemic HMGB1 induced by TBI reversed hypoxia and improved lung compliance. Compared to wild-type donors, lungs from RAGE(-/-) TBI donors did not develop acute lung injury after transplantation. In a study of clinical transplantation, elevated systemic HMGB1 in donors correlated with impaired systemic oxygenation of the donor lung before transplantation and predicted impaired oxygenation after transplantation. These data suggest that the HMGB1-RAGE axis plays a role in the mechanism by which TBI induces lung dysfunction and that targeting this pathway before transplant may improve recipient outcomes after lung transplantation.
  • Loading...
    Thumbnail Image
    Item
    Hypoxia-Inducible Factor-1α Regulates CD55 in Airway Epithelium
    (American Thoracic Society, 2016-12) Pandya, Pankita H.; Fisher, Amanda J.; Mickler, Elizabeth A.; Temm, Constance J.; Lipking, Kelsey P.; Gracon, Adam; Rothhaar, Katia; Sandusky, George E.; Murray, Mary; Pollok, Karen; Renbarger, Jamie; Blum, Janice S.; Lahm, Tim; Wilkes, David S.; Microbiology and Immunology, School of Medicine
    Airway epithelial CD55 down-regulation occurs in several hypoxia-associated pulmonary diseases, but the mechanism is unknown. Using in vivo and in vitro assays of pharmacologic inhibition and gene silencing, the current study investigated the role of hypoxia-inducible factor (HIF)-1α in regulating airway epithelial CD55 expression. Hypoxia down-regulated CD55 expression on small-airway epithelial cells in vitro, and in murine lungs in vivo; the latter was associated with local complement activation. Treatment with pharmacologic inhibition or silencing of HIF-1α during hypoxia-recovered CD55 expression in small-airway epithelial cells. HIF-1α overexpression or blockade, in vitro or in vivo, down-regulated CD55 expression. Collectively, these data show a key role for HIF-1α in regulating the expression of CD55 on airway epithelium.
  • Loading...
    Thumbnail Image
    Item
    IL-17A deficiency mitigates bleomycin-induced complement activation during lung fibrosis
    (Federation of American Societies for Experimental Biology, 2017-12) Cipolla, Ellyse; Fisher, Amanda J.; Gu, Hongmei; Mickler, Elizabeth A.; Agarwal, Manisha; Wilke, Carol A.; Kim, Kevin K.; Moore, Bethany B.; Vittal, Ragini; Medicine, School of Medicine
    Interleukin 17A (IL-17A) and complement (C') activation have each been implicated in the pathogenesis of idiopathic pulmonary fibrosis (IPF). We have reported that IL-17A induces epithelial injury via TGF-β in murine bronchiolitis obliterans; that TGF-β and the C' cascade present signaling interactions in mediating epithelial injury; and that the blockade of C' receptors mitigates lung fibrosis. In the present study, we investigated the role of IL-17A in regulating C' in lung fibrosis. Microarray analyses of mRNA isolated from primary normal human small airway epithelial cells indicated that IL-17A (100 ng/ml; 24 h; n = 5 donor lungs) induces C' components (C' factor B, C3, and GPCR kinase isoform 5), cytokines (IL8, -6, and -1B), and cytokine ligands (CXCL1, -2, -3, -5, -6, and -16). IL-17A induces protein and mRNA regulation of C' components and the synthesis of active C' 3a (C3a) in normal primary human alveolar type II epithelial cells (AECs). Wild-type mice subjected to IL-17A neutralization and IL-17A knockout (il17a-/- ) mice were protected against bleomycin (BLEO)-induced fibrosis and collagen deposition. Further, BLEO-injured il17a-/- mice had diminished levels of circulating Krebs Von Den Lungen 6 (alveolar epithelial injury marker), local caspase-3/7, and local endoplasmic reticular stress-related genes. BLEO-induced local C' activation [C3a, C5a, and terminal C' complex (C5b-9)] was attenuated in il17a-/- mice, and IL-17A neutralization prevented the loss of epithelial C' inhibitors (C' receptor-1 related isoform Y and decay accelerating factor), and an increase in local TUNEL levels. RNAi-mediated gene silencing of il17a in fibrotic mice arrested the progression of lung fibrosis, attenuated cellular apoptosis (caspase-3/7) and lung deposition of collagen and C' (C5b-9). Compared to normals, plasma from IPF patients showed significantly higher hemolytic activity. Our findings demonstrate that limiting complement activation by neutralizing IL-17A is a potential mechanism in ameliorating lung fibrosis.-Cipolla, E., Fisher, A. J., Gu, H., Mickler, E. A., Agarwal, M., Wilke, C. A., Kim, K. K., Moore, B. B., Vittal, R. IL-17A deficiency mitigates bleomycin-induced complement activation during lung fibrosis.
  • Loading...
    Thumbnail Image
    Item
    Modulation of soluble guanylate cyclase ameliorates pulmonary hypertension in a rat model of chronic thromboembolic pulmonary hypertension by stimulating angiogenesis
    (Wiley, 2022-01) Zagorski, John; Neto-Neves, Evandro; Alves, Nathan J.; Fisher, Amanda J.; Kline, Jeffrey A.; Emergency Medicine, School of Medicine
    Acute pulmonary embolism (PE) does not always resolve after treatment and can progress to chronic thromboembolic disease (CTED) or the more severe chronic thromboembolic pulmonary hypertension (CTEPH). The mechanisms surrounding the likelihood of PE resolution or progress to CTED/CTEPH remain largely unknown. We have developed a rat model of CTEPH that closely resembles the human disease in terms of hemodynamics and cardiac manifestations. Embolization of rats with polystyrene microspheres followed by suppression of angiogenesis with the inhibitor of vascular endothelial growth factor receptor 2 (VEGF-R2) SU5416 results in transient, acute pulmonary hypertension that progresses into chronic PE with PH with sustained right ventricular systolic pressures exceeding 70 mmHg (chronic pulmonary embolism [CPE] model). This model is similar to the widely utilized hypoxia/SU5416 model with the exception that the "first hit" is PE. Rats with CPE have impaired right heart function characterized by reduced VO2 Max, reduced cardiac output, and increased Fulton index. None of these metrics are adversely affected by PE alone. Contrast-mediated CT imaging of lungs from rats with PE minus SU5416 show large increases in pulmonary vascular volume, presumably due to an angiogenic response to acute PE/PH. Co-treatment with SU5416 suppresses angiogenesis and produces the CTEPH-like phenotype. We report here that treatment of CPE rats with agonists for soluble guanylate cyclase, a source of cGMP which is in turn a signal for angiogenesis, markedly increases angiogenesis in lungs, and ameliorates the cardiac deficiencies in the CPE model. These results have implications for future development of therapies for human CTEPH.
  • Loading...
    Thumbnail Image
    Item
    Neonatal hyperoxic lung injury favorably alters adult right ventricular remodeling response to chronic hypoxia exposure
    (American Physiological Society, 2015-04-15) Goss, Kara N.; Cucci, Anthony R.; Fisher, Amanda J.; Albrecht, Marjorie; Frump, Andrea; Tursunova, Roziya; Gao, Yong; Brown, Mary Beth; Petrache, Irina; Tepper, Robert S.; Ahlfeld, Shawn K.; Lahm, Tim; Department of Medicine, IU School of Medicine
    The development of pulmonary hypertension (PH) requires multiple pulmonary vascular insults, yet the role of early oxygen therapy as an initial pulmonary vascular insult remains poorly defined. Here, we employ a two-hit model of PH, utilizing postnatal hyperoxia followed by adult hypoxia exposure, to evaluate the role of early hyperoxic lung injury in the development of later PH. Sprague-Dawley pups were exposed to 90% oxygen during postnatal days 0-4 or 0-10 or to room air. All pups were then allowed to mature in room air. At 10 wk of age, a subset of rats from each group was exposed to 2 wk of hypoxia (Patm = 362 mmHg). Physiological, structural, and biochemical endpoints were assessed at 12 wk. Prolonged (10 days) postnatal hyperoxia was independently associated with elevated right ventricular (RV) systolic pressure, which worsened after hypoxia exposure later in life. These findings were only partially explained by decreases in lung microvascular density. Surprisingly, postnatal hyperoxia resulted in robust RV hypertrophy and more preserved RV function and exercise capacity following adult hypoxia compared with nonhyperoxic rats. Biochemically, RVs from animals exposed to postnatal hyperoxia and adult hypoxia demonstrated increased capillarization and a switch to a fetal gene pattern, suggesting an RV more adept to handle adult hypoxia following postnatal hyperoxia exposure. We concluded that, despite negative impacts on pulmonary artery pressures, postnatal hyperoxia exposure may render a more adaptive RV phenotype to tolerate late pulmonary vascular insults.
  • «
  • 1 (current)
  • 2
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University