- Browse by Author
Browsing by Author "Fischer, Benjamin I."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The impact of hydroxyapatite on alkaline phosphatase activity and mineral deposition of dental pulp stem cells using a double antibiotic paste loaded methylcellulose carrier(2020) Fischer, Benjamin I.; Bruzzaniti, Angela; Spolnik, Kenneth; Ehrlich, Ygal; Bringas, Josef; Gregory, RichardIntroduction: Regenerative endodontic procedures (REPs) are a type of endodontic treatment aimed at replacing damaged tooth structures, including dentin and root structures, as well as cells of the pulp-dentin complex. Double antibiotic paste (DAP) has been shown to be efficacious in achieving disinfection of the root canal system while minimizing cytotoxicity to dental pulp stem cells (DPSCs). Hydroxyapatite (HA) is an extracellular, mineralized component of bone that has shown much promise as a scaffold in the field of regenerative medicine. Objective: The objective of this study was to evaluate the effects of HA in a DAP loaded methylcellulose (MC) carrier on the differentiation and mineral deposition of DPSC over time. Materials and Methods: DPSCs were plated in 24-well plates with culture media. The following day, semi-permeable 0.1 m chambers were inserted into the wells to separate the reservoirs and permit delivery of medicaments. 100 L treatment paste composed of MC with 1% DAP and either 0.5% or 1.0% nano-HA was added, followed by additional culture media. After 3 days of treatment, medicaments were removed and DPSCs were cultured for an additional 9 days with replacement of media every 3-4 days. At Day 12, DPSCs were evaluated for alkaline phosphatase (ALP) activity using a biochemical assay and mineral deposition using an Alizarin Red S Ca2+ staining assay (4 wells/group). Comparisons between groups were performed using one-way analysis of variance (ANOVA) with a 5% significance level used for all tests. Results: A trend towards increased ALP and mineral deposition activity was noted among the groups with HA added to DAP with MC. Although these trends were not statistically significant, a trend towards increased ALP and mineral deposition was observed after 3-day medicament exposure. The results were similar to previous findings using 7-day medicament treatments. Conclusion: The addition of HA showed a trend towards improved differentiation and mineral deposition of DPSCs compared to DAP with MC. Although additional studies are required, these results showed suggest that even with a shortened treatment time, increased differentiation and mineral deposition of DPSCs may be possible. This study provides additional support that low concentration DAP in a MC carrier has potential application in regenerative endodontic procedures. The novel addition of HA may provide additional osteogenic potential.Item The Radiopacity and Antimicrobial Properties of Different Radiopaque Double Antibiotic Pastes Used in Regenerative Endodontics(Elsevier, 2018-09) Verma, Rohan; Fischer, Benjamin I.; Gregory, Richard L.; Yassen, Ghaeth H.; Biomedical Sciences and Comprehensive Care, School of DentistryIntroduction We evaluated the radiopacity and antibacterial properties of various concentrations of double antibiotic paste (DAP) containing barium sulfate (BaSO4) or zirconium oxide (ZrO2) radiopaque agents. Methods The radiopacity of 1, 10, and 25 mg/mL DAP containing 30% (w/v) BaSO4 or ZrO2, DAP-free radiopaque pastes, and commercially available radiopaque calcium hydroxide (Ca[OH]2) were evaluated according to ISO 6876/2001 with slight modifications (n = 6 per group). Dentin samples (n = 70) infected anaerobically for 3 weeks with bacterial biofilms obtained from a root canal of an immature tooth with pulpal necrosis were treated with similar experimental pastes or received no treatment (n = 7). After 1 week, the pastes were rinsed off, and biofilm disruption assays were conducted. To show the residual antibacterial effects, sterile dentin samples (n = 70) were pretreated for 1 week with the same pastes (n = 7). The pastes were rinsed off, and the samples were immersed in phosphate-buffered saline for 24 hours and infected anaerobically with the same bacterial biofilm mentioned earlier for 3 weeks before conducting biofilm disruption assays. Sterile dentin blocks were used in both antibacterial analyses as negative control groups (n = 7). Wilcoxon rank sum tests were used for statistical analyses. Results No tested concentrations of BaSO4 DAP or ZrO2 DAP showed significant differences from Ca(OH)2 in radiopacity. However, all tested concentrations of BaSO4 DAP, ZrO2 DAP, and Ca(OH)2 exhibited significant direct antibacterial effects. ZrO2 DAP at 1 mg/mL and Ca(OH)2 did not show significant residual antibacterial effects. Conclusions BaSO4 DAP at 1 mg/mL provided significantly superior residual antibacterial effects and comparable radiopacity with the commercially available Ca(OH)2.