- Browse by Author
Browsing by Author "Farlow, Martin"
Now showing 1 - 10 of 18
Results Per Page
Sort Options
Item A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer's disease(Springer Nature, 2021) Salloway, Stephen; Farlow, Martin; McDade, Eric; Clifford, David B.; Wang, Guoqiao; Llibre-Guerra, Jorge J.; Hitchcock, Janice M.; Mills, Susan L.; Santacruz, Anna M.; Aschenbrenner, Andrew J.; Hassenstab, Jason; Benzinger, Tammie L.S.; Gordon, Brian A.; Fagan, Anne M.; Coalier, Kelley A.; Cruchaga, Carlos; Goate, Alison A.; Perrin, Richard J.; Xiong, Chengjie; Li, Yan; Morris, John C.; Snider, B. Joy; Mummery, Catherine; Surti, G. Mustafa; Hannequin, Didier; Wallon, David; Berman, Sarah B.; Lah, James J.; Jimenez-Velazquez, Ivonne Z.; Roberson, Erik D.; van Dyck, Christopher H.; Honig, Lawrence S.; Sánchez-Valle, Raquel; Brooks, William S.; Gauthier, Serge; Galasko, Douglas R.; Masters, Colin L.; Brosch, Jared R.; Hsiung, Ging-Yuek Robin; Jayadev, Suman; Formaglio, Maité; Masellis, Mario; Clarnette, Roger; Pariente, Jérémie; Dubois, Bruno; Pasquier, Florence; Jack, Clifford R., Jr.; Koeppe, Robert; Snyder, Peter J.; Aisen, Paul S.; Thomas, Ronald G.; Berry, Scott M.; Wendelberger, Barbara A.; Andersen, Scott W.; Holdridge, Karen C.; Mintun, Mark A.; Yaari, Roy; Sims, John R.; Baudler, Monika; Delmar, Paul; Doody, Rachelle S.; Fontoura, Paulo; Giacobino, Caroline; Kerchner, Geoffrey A.; Bateman, Randall J.; Dominantly Inherited Alzheimer Network–Trials Unit; Neurology, School of MedicineDominantly inherited Alzheimer's disease (DIAD) causes predictable biological changes decades before the onset of clinical symptoms, enabling testing of interventions in the asymptomatic and symptomatic stages to delay or slow disease progression. We conducted a randomized, placebo-controlled, multi-arm trial of gantenerumab or solanezumab in participants with DIAD across asymptomatic and symptomatic disease stages. Mutation carriers were assigned 3:1 to either drug or placebo and received treatment for 4-7 years. The primary outcome was a cognitive end point; secondary outcomes included clinical, cognitive, imaging and fluid biomarker measures. Fifty-two participants carrying a mutation were assigned to receive gantenerumab, 52 solanezumab and 40 placebo. Both drugs engaged their Aβ targets but neither demonstrated a beneficial effect on cognitive measures compared to controls. The solanezumab-treated group showed a greater cognitive decline on some measures and did not show benefits on downstream biomarkers. Gantenerumab significantly reduced amyloid plaques, cerebrospinal fluid total tau, and phospho-tau181 and attenuated increases of neurofilament light chain. Amyloid-related imaging abnormalities edema was observed in 19.2% (3 out of 11 were mildly symptomatic) of the gantenerumab group, 2.5% of the placebo group and 0% of the solanezumab group. Gantenerumab and solanezumab did not slow cognitive decline in symptomatic DIAD. The asymptomatic groups showed no cognitive decline; symptomatic participants had declined before reaching the target doses.Item Accelerated functional brain aging in pre-clinical familial Alzheimer’s disease(Springer Nature, 2021-09-09) Gonneaud, Julie; Baria, Alex T.; Binette, Alexa Pichet; Gordon, Brian A.; Chhatwal, Jasmeer P.; Cruchaga, Carlos; Jucker, Mathias; Levin, Johannes; Salloway, Stephen; Farlow, Martin; Gauthier, Serge; Benzinger, Tammie L.S.; Morris, John C.; Bateman, Randall J.; Breitner, John C.S.; Poirier, Judes; Vachon-Presseau, Etienne; Villeneuve, Sylvia; Neurology, School of MedicineResting state functional connectivity (rs-fMRI) is impaired early in persons who subsequently develop Alzheimer’s disease (AD) dementia. This impairment may be leveraged to aid investigation of the pre-clinical phase of AD. We developed a model that predicts brain age from resting state (rs)-fMRI data, and assessed whether genetic determinants of AD, as well as beta-amyloid (Aβ) pathology, can accelerate brain aging. Using data from 1340 cognitively unimpaired participants between 18–94 years of age from multiple sites, we showed that topological properties of graphs constructed from rs-fMRI can predict chronological age across the lifespan. Application of our predictive model to the context of pre-clinical AD revealed that the pre-symptomatic phase of autosomal dominant AD includes acceleration of functional brain aging. This association was stronger in individuals having significant Aβ pathology.Item Active Aβ immunotherapy CAD106 in Alzheimer's disease: A phase 2b study(Elsevier, 2017-01) Vandenberghe, Rik; Riviere, Marie-Emmanuelle; Caputo, Angelika; Sovago, Judit; Maguire, R. Paul; Farlow, Martin; Marotta, Giovanni; Sanchez-Valle, Raquel; Scheltens, Philip; Ryan, J. Michael; Graf, Ana; Department of Neurology, School of MedicineIntroduction This randomized, double-blind, placebo-controlled, 90-week study assessed safety, tolerability, and immunogenicity of CAD106 with/without adjuvant in patients with mild Alzheimer's disease. Methods One hundred twenty-one patients received up to seven intramuscular injections of CAD106 (150 μg or 450 μg) or placebo ± adjuvant over 60 weeks. An amyloid positron emission tomography (PET) substudy was also conducted. Results CAD106 induced strong serological responses (amyloid-beta [Aβ]–Immunoglobuline G[IgG]) in 55.1% (150 μg) and 81.1% (450 μg) of patients (strong serological responders [SSRs]). Serious adverse events (SAEs) were reported in 24.5% (95% confidence interval [CI] 16.7–33.8) of the patients in the active treatment group and in 6.7% (95% CI 0.2–31.9) in the placebo group. Three of the SAEs were classified as possibly related to study drug by the investigators. No evidence of central nervous system inflammation was found. Amyloid-related imaging abnormalities (ARIAs) occurred in six cases, all of them were strong serological responders. None of the ARIAs were symptomatic. Serum Aβ-IgG titer area under the curves correlated negatively with amyloid PET standardized uptake value ratio percentage change from baseline to week 78 within the CAD106-treated patients (r = −0.84, P = .0004). Decrease in cortical gray-matter volume from baseline to week 78 was larger in SSRs than in controls (P = .0077). Discussion Repeated CAD106 administration was generally well tolerated. CAD106 450 μg with alum adjuvant demonstrated the best balance between antibody response and tolerability.Item Amyloid-Related Imaging Abnormalities in the DIAN-TU-001 Trial of Gantenerumab and Solanezumab: Lessons from a Trial in Dominantly Inherited Alzheimer Disease(Wiley, 2022) Joseph-Mathurin, Nelly; Llibre-Guerra, Jorge J.; Li, Yan; McCullough, Austin A.; Hofmann, Carsten; Wojtowicz, Jakub; Park, Ethan; Wang, Guoqiao; Preboske, Gregory M.; Wang, Qing; Gordon, Brian A.; Chen, Charles D.; Flores, Shaney; Aggarwal, Neelum T.; Berman, Sarah B.; Bird, Thomas D.; Black, Sandra E.; Borowski, Bret; Brooks, William S.; Chhatwal, Jasmeer P.; Clarnette, Roger; Cruchaga, Carlos; Fagan, Anne M.; Farlow, Martin; Fox, Nick C.; Gauthier, Serge; Hassenstab, Jason; Hobbs, Diana A.; Holdridge, Karen C.; Honig, Lawrence S.; Hornbeck, Russ C.; Hsiung, Ging-Yuek R.; Jack, Clifford R., Jr.; Jimenez-Velazquez, Ivonne Z.; Jucker, Mathias; Klein, Gregory; Levin, Johannes; Mancini, Michele; Masellis, Mario; McKay, Nicole S.; Mummery, Catherine J.; Ringman, John M.; Shimada, Hiroyuki; Snider, B. Joy; Suzuki, Kazushi; Wallon, David; Xiong, Chengjie; Yaari, Roy; McDade, Eric; Perrin, Richard J.; Bateman, Randall J.; Salloway, Stephen P.; Benzinger, Tammie L. S.; Clifford, David B.; Dominantly Inherited Alzheimer Network Trials Unit; Neurology, School of MedicineObjective: To determine the characteristics of participants with amyloid-related imaging abnormalities (ARIA) in a trial of gantenerumab or solanezumab in dominantly inherited Alzheimer disease (DIAD). Methods: 142 DIAD mutation carriers received either gantenerumab SC (n = 52), solanezumab IV (n = 50), or placebo (n = 40). Participants underwent assessments with the Clinical Dementia Rating® (CDR®), neuropsychological testing, CSF biomarkers, β-amyloid positron emission tomography (PET), and magnetic resonance imaging (MRI) to monitor ARIA. Cross-sectional and longitudinal analyses evaluated potential ARIA-related risk factors. Results: Eleven participants developed ARIA-E, including 3 with mild symptoms. No ARIA-E was reported under solanezumab while gantenerumab was associated with ARIA-E compared to placebo (odds ratio [OR] = 9.1, confidence interval [CI][1.2, 412.3]; p = 0.021). Under gantenerumab, APOE-ɛ4 carriers were more likely to develop ARIA-E (OR = 5.0, CI[1.0, 30.4]; p = 0.055), as were individuals with microhemorrhage at baseline (OR = 13.7, CI[1.2, 163.2]; p = 0.039). No ARIA-E was observed at the initial 225 mg/month gantenerumab dose, and most cases were observed at doses >675 mg. At first ARIA-E occurrence, all ARIA-E participants were amyloid-PET+, 60% were CDR >0, 60% were past their estimated year to symptom onset, and 60% had also incident ARIA-H. Most ARIA-E radiologically resolved after dose adjustment and developing ARIA-E did not significantly increase odds of trial discontinuation. ARIA-E was more frequently observed in the occipital lobe (90%). ARIA-E severity was associated with age at time of ARIA-E. Interpretation: In DIAD, solanezumab was not associated with ARIA. Gantenerumab dose over 225 mg increased ARIA-E risk, with additional risk for individuals APOE-ɛ4(+) or with microhemorrhage. ARIA-E was reversible on MRI in most cases, generally asymptomatic, without additional risk for trial discontinuation.Item Association between BrainAGE and Alzheimer's disease biomarkers(Wiley, 2025-02-27) Abughofah, Yousaf; Deardorff, Rachael; Vosmeier, Aaron; Hottle, Savannah; Dage, Jeffrey L.; Dempsey, Desarae; Apostolova, Liana G.; Brosch, Jared; Clark, David; Farlow, Martin; Foroud, Tatiana; Gao, Sujuan; Wang, Sophia; Zetterberg, Henrik; Blennow, Kaj; Saykin, Andrew J.; Risacher, Shannon L.; Radiology and Imaging Sciences, School of MedicineIntroduction: The brain age gap estimation (BrainAGE) method uses a machine learning model to generate an age estimate from structural magnetic resonance imaging (MRI) scans. The goal was to study the association of brain age with Alzheimer's disease (AD) imaging and plasma biomarkers. Methods: One hundred twenty-three individuals from the Indiana Memory and Aging Study underwent structural MRI, amyloid and tau positron emission tomography (PET), and plasma sampling. The MRI scans were processed using the software program BrainAgeR to receive a "brain age" estimate. Plasma biomarker concentrations were measured, and partial Pearson correlation models were used to evaluate their relationship with brain age gap (BAG) estimation (BrainAGE = chronological age - MRI estimated brain age). Results: Significant associations between BAG and amyloid and tau levels on PET and in plasma were observed depending on diagnostic categories. Discussion: These findings suggest that BAG is potentially a biomarker of pathology in AD which can be applied to routine brain imaging. Highlights: Novel research that uses an artificial intelligence learning tool to estimate brain age. Findings suggest that brain age gap is associated with plasma and positron emission tomography Alzheimer's disease (AD) biomarkers. Differential relationships are seen in different stages of disease (preclinical vs. clinical). Results could play a role in early AD diagnosis and treatment.Item Autosomal dominant and sporadic late onset Alzheimer's disease share a common in vivo pathophysiology(Oxford University Press, 2022) Morris, John C.; Weiner, Michael; Xiong, Chengjie; Beckett, Laurel; Coble, Dean; Saito, Naomi; Aisen, Paul S.; Allegri, Ricardo; Benzinger, Tammie L. S.; Berman, Sarah B.; Cairns, Nigel J.; Carrillo, Maria C.; Chui, Helena C.; Chhatwal, Jasmeer P.; Cruchaga, Carlos; Fagan, Anne M.; Farlow, Martin; Fox, Nick C.; Ghetti, Bernardino; Goate, Alison M.; Gordon, Brian A.; Graff-Radford, Neill; Day, Gregory S.; Hassenstab, Jason; Ikeuchi, Takeshi; Jack, Clifford R.; Jagust, William J.; Jucker, Mathias; Levin, Johannes; Massoumzadeh, Parinaz; Masters, Colin L.; Martins, Ralph; McDade, Eric; Mori, Hiroshi; Noble, James M.; Petersen, Ronald C.; Ringman, John M.; Salloway, Stephen; Saykin, Andrew J.; Schofield, Peter R.; Shaw, Leslie M.; Toga, Arthur W.; Trojanowski, John Q.; Vöglein, Jonathan; Weninger, Stacie; Bateman, Randall J.; Buckles, Virginia D.; Dominantly Inherited Alzheimer Network; Alzheimer’s Disease Neuroimaging and Initiative; Neurology, School of MedicineThe extent to which the pathophysiology of autosomal dominant Alzheimer's disease corresponds to the pathophysiology of 'sporadic' late onset Alzheimer's disease is unknown, thus limiting the extrapolation of study findings and clinical trial results in autosomal dominant Alzheimer's disease to late onset Alzheimer's disease. We compared brain MRI and amyloid PET data, as well as CSF concentrations of amyloid-β42, amyloid-β40, tau and tau phosphorylated at position 181, in 292 carriers of pathogenic variants for Alzheimer's disease from the Dominantly Inherited Alzheimer Network, with corresponding data from 559 participants from the Alzheimer's Disease Neuroimaging Initiative. Imaging data and CSF samples were reprocessed as appropriate to guarantee uniform pipelines and assays. Data analyses yielded rates of change before and after symptomatic onset of Alzheimer's disease, allowing the alignment of the ∼30-year age difference between the cohorts on a clinically meaningful anchor point, namely the participant age at symptomatic onset. Biomarker profiles were similar for both autosomal dominant Alzheimer's disease and late onset Alzheimer's disease. Both groups demonstrated accelerated rates of decline in cognitive performance and in regional brain volume loss after symptomatic onset. Although amyloid burden accumulation as determined by PET was greater after symptomatic onset in autosomal dominant Alzheimer's disease than in late onset Alzheimer's disease participants, CSF assays of amyloid-β42, amyloid-β40, tau and p-tau181 were largely overlapping in both groups. Rates of change in cognitive performance and hippocampal volume loss after symptomatic onset were more aggressive for autosomal dominant Alzheimer's disease participants. These findings suggest a similar pathophysiology of autosomal dominant Alzheimer's disease and late onset Alzheimer's disease, supporting a shared pathobiological construct.Item Avoid or Embrace? Practice Effects in Alzheimer’s Disease Prevention Trials(Frontiers Media, 2022-06-16) Aschenbrenner, Andrew J.; Hassenstab, Jason; Wang, Guoqiao; Li, Yan; Xiong, Chengjie; McDade, Eric; Clifford, David B.; Salloway, Stephen; Farlow, Martin; Yaari, Roy; Cheng, Eden Y. J.; Holdridge, Karen C.; Mummery, Catherine J.; Masters, Colin L.; Hsiung, Ging-Yuek; Surti, Ghulam; Day, Gregory S.; Weintraub, Sandra; Honig, Lawrence S.; Galvin, James E.; Ringman, John M.; Brooks, William S.; Fox, Nick C.; Snyder, Peter J.; Suzuki, Kazushi; Shimada, Hiroyuki; Gräber, Susanne; Bateman, Randall J.; Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU); Neurology, School of MedicineDemonstrating a slowing in the rate of cognitive decline is a common outcome measure in clinical trials in Alzheimer's disease (AD). Selection of cognitive endpoints typically includes modeling candidate outcome measures in the many, richly phenotyped observational cohort studies available. An important part of choosing cognitive endpoints is a consideration of improvements in performance due to repeated cognitive testing (termed "practice effects"). As primary and secondary AD prevention trials are comprised predominantly of cognitively unimpaired participants, practice effects may be substantial and may have considerable impact on detecting cognitive change. The extent to which practice effects in AD prevention trials are similar to those from observational studies and how these potential differences impact trials is unknown. In the current study, we analyzed data from the recently completed DIAN-TU-001 clinical trial (TU) and the associated DIAN-Observational (OBS) study. Results indicated that asymptomatic mutation carriers in the TU exhibited persistent practice effects on several key outcomes spanning the entire trial duration. Critically, these practice related improvements were larger on certain tests in the TU relative to matched participants from the OBS study. Our results suggest that the magnitude of practice effects may not be captured by modeling potential endpoints in observational studies where assessments are typically less frequent and drug expectancy effects are absent. Using alternate instrument forms (represented in our study by computerized tasks) may partly mitigate practice effects in clinical trials but incorporating practice effects as outcomes may also be viable. Thus, investigators must carefully consider practice effects (either by minimizing them or modeling them directly) when designing cognitive endpoint AD prevention trials by utilizing trial data with similar assessment frequencies.Item Awareness of Genetic Risk in the Dominantly Inherited Alzheimer Network (DIAN)(Wiley, 2020-01) Aschenbrenner, Andrew J.; James, Bryan D.; McDade, Eric; Wang, Guoqiao; Lim, Yen Ying; Benzinger, Tammie L.S.; Cruchaga, Carlos; Goate, Alison; Xiong, Chengjie; Perrin, Richard; Buckles, Virginia; Allegri, Ricardo; Berman, Sarah B.; Chhatwal, Jasmeer P.; Fagan, Anne; Farlow, Martin; O'Connor, Antoinette; Ghetti, Bernardino; Graff-Radford, Neill; Goldman, Jill; Gräber, Susanne; Karch, Celeste M.; Lee, Jae-Hong; Levin, Johannes; Martins, Ralph N.; Masters, Colin; Mori, Hiroshi; Noble, James; Salloway, Stephen; Schofield, Peter; Morris, John C.; Bateman, Randall J.; Hassenstab, Jason; Neurology, School of MedicineIntroduction: Although some members of families with autosomal dominant Alzheimer's disease mutations learn their mutation status, most do not. How knowledge of mutation status affects clinical disease progression is unknown. This study quantifies the influence of mutation awareness on clinical symptoms, cognition, and biomarkers. Methods: Mutation carriers and non-carriers from the Dominantly Inherited Alzheimer Network (DIAN) were stratified based on knowledge of mutation status. Rates of change on standard clinical, cognitive, and neuroimaging outcomes were examined. Results: Mutation knowledge had no associations with cognitive decline, clinical progression, amyloid deposition, hippocampal volume, or depression in either carriers or non-carriers. Carriers who learned their status mid-study had slightly higher levels of depression and lower cognitive scores. Discussion: Knowledge of mutation status does not affect rates of change on any measured outcome. Learning of status mid-study may confer short-term changes in cognitive functioning, or changes in cognition may influence the determination of mutation status.Item Change in Cerebrospinal Fluid Tau Microtubule Binding Region Detects Symptom Onset, Cognitive Decline, Tangles, and Atrophy in Dominantly Inherited Alzheimer's Disease(Wiley, 2023) Horie, Kanta; Li, Yan; Barthélemy, Nicolas R.; Gordon, Brian; Hassenstab, Jason; Benzinger, Tammie L. S.; Fagan, Anne M.; Morris, John C.; Karch, Celeste M.; Xiong, Chengjie; Allegri, Ricardo; Mendez, Patricio Chrem; Ikeuchi, Takeshi; Kasuga, Kensaku; Noble, James; Farlow, Martin; Chhatwal, Jasmeer; Day, Gregory; Schofield, Peter R.; Masters, Colin L.; Levin, Johannes; Jucker, Mathias; Lee, Jae-Hong; Roh, Jee Hoon; Sato, Chihiro; Sachdev, Pallavi; Koyama, Akihiko; Reyderman, Larisa; Bateman, Randall J.; McDade, Eric; Dominantly Inherited Alzheimer Network; Neurology, School of MedicineObjective: Identifying cerebrospinal fluid measures of the microtubule binding region of tau (MTBR-tau) species that reflect tau aggregation could provide fluid biomarkers that track Alzheimer's disease related neurofibrillary tau pathological changes. We examined the cerebrospinal fluid (CSF) MTBR-tau species in dominantly inherited Alzheimer's disease (DIAD) mutation carriers to assess the association with Alzheimer's disease (AD) biomarkers and clinical symptoms. Methods: Cross-sectional and longitudinal CSF from 229 DIAD mutation carriers and 130 mutation non-carriers had sequential characterization of N-terminal/mid-domain phosphorylated tau (p-tau) followed by MTBR-tau species and tau positron emission tomography (tau PET), other soluble tau and amyloid biomarkers, comprehensive clinical and cognitive assessments, and brain magnetic resonance imaging of atrophy. Results: CSF MTBR-tau species located within the putative "border" region and one species corresponding to the "core" region of aggregates in neurofibrillary tangles (NFTs) increased during the presymptomatic stage and decreased during the symptomatic stage. The "border" MTBR-tau species were associated with amyloid pathology and CSF p-tau; whereas the "core" MTBR-tau species were associated stronger with tau PET and CSF measures of neurodegeneration. The ratio of the border to the core species provided a continuous measure of increasing amounts that tracked clinical progression and NFTs. Interpretation: Changes in CSF soluble MTBR-tau species preceded the onset of dementia, tau tangle increase, and atrophy in DIAD. The ratio of 4R-specific MTBR-tau (border) to the NFT (core) MTBR-tau species corresponds to the pathology of NFTs in DIAD and change with disease progression. The dynamics between different MTBR-tau species in the CSF may serve as a marker of tau-related disease progression and target engagement of anti-tau therapeutics.Item Circular RNA detection identifies circPSEN1 alterations in brain specific to autosomal dominant Alzheimer's disease(BMC, 2022-03-04) Chen, Hsiang‑Han; Eteleeb, Abdallah; Wang, Ciyang; Fernandez, Maria Victoria; Budde, John P.; Bergmann, Kristy; Norton, Joanne; Wang, Fengxian; Ebl, Curtis; Morris, John C.; Perrin, Richard J.; Bateman, Randall J.; McDade, Eric; Xiong, Chengjie; Goate, Alison; Farlow, Martin; Chhatwal, Jasmeer; Schofield, Peter R.; Chui, Helena; Harari, Oscar; Cruchaga, Carlos; Ibanez, Laura; Dominantly Inherited Alzheimer Network; Neurology, School of MedicineBackground: Autosomal-dominant Alzheimer's disease (ADAD) is caused by pathogenic mutations in APP, PSEN1, and PSEN2, which usually lead to an early age at onset (< 65). Circular RNAs are a family of non-coding RNAs highly expressed in the nervous system and especially in synapses. We aimed to investigate differences in brain gene expression of linear and circular transcripts from the three ADAD genes in controls, sporadic AD, and ADAD. Methods: We obtained and sequenced RNA from brain cortex using standard protocols. Linear counts were obtained using the TOPMed pipeline; circular counts, using python package DCC. After stringent quality control (QC), we obtained the counts for PSEN1, PSEN2 and APP genes. Only circPSEN1 passed QC. We used DESeq2 to compare the counts across groups, correcting for biological and technical variables. Finally, we performed in-silico functional analyses using the Circular RNA interactome website and DIANA mirPath software. Results: Our results show significant differences in gene counts of circPSEN1 in ADAD individuals, when compared to sporadic AD and controls (ADAD = 21, AD = 253, Controls = 23-ADADvsCO: log2FC = 0.794, p = 1.63 × 10-04, ADADvsAD: log2FC = 0.602, p = 8.22 × 10-04). The high gene counts are contributed by two circPSEN1 species (hsa_circ_0008521 and hsa_circ_0003848). No significant differences were observed in linear PSEN1 gene expression between cases and controls, indicating that this finding is specific to the circular forms. In addition, the high circPSEN1 levels do not seem to be specific to PSEN1 mutation carriers; the counts are also elevated in APP and PSEN2 mutation carriers. In-silico functional analyses suggest that circPSEN1 is involved in several pathways such as axon guidance (p = 3.39 × 10-07), hippo signaling pathway (p = 7.38 × 10-07), lysine degradation (p = 2.48 × 10-05) or Wnt signaling pathway (p = 5.58 × 10-04) among other KEGG pathways. Additionally, circPSEN1 counts were able to discriminate ADAD from sporadic AD and controls with an AUC above 0.70. Conclusions: Our findings show the differential expression of circPSEN1 is increased in ADAD. Given the biological function previously ascribed to circular RNAs and the results of our in-silico analyses, we hypothesize that this finding might be related to neuroinflammatory events that lead or that are caused by the accumulation of amyloid-beta.