- Browse by Author
Browsing by Author "Evans, Eric"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Active Virtual Reality Games Reduce Pain Sensitivity in Young, Healthy Adults(Frontiers, 2021-11) Evans, Eric; Naugle, Keith E.; Ovispo, Alex; Kaleth, Anthony S.; Arnold, Brent; Naugle, Kelly M.; Kinesiology, School of Health and Human SciencesSeparately, both physical activity and virtual reality can attenuate pain sensitivity in healthy adults. What is unknown is whether virtual reality combined with physical activity (active virtual reality) could have a greater hypoalgesic effect compared to non-active virtual reality distraction (passive virtual reality engagement). Objective: The purpose of this study was to determine whether playing physically active virtual reality games exert a greater hypoalgesic effect than a non-active virtual reality game. Methods: Participants (n = 36) played three different active virtual reality games (Beat Saber, Holopoint, and Hot Squat) and one non-active virtual reality game (Relax Walk) for 15 min on four different visits. During gameplay, participants wore accelerometers on the thigh, wrist, and waist to measure movement intensity and quantity. Pressure pain thresholds were measured on the forearm and thigh immediately prior to gameplay (pretest) and immediately following each gaming bout (posttest). Results: Analysis of the accelerometer data indicated that Hot Squat elicited greater whole-body and lower body moderate to vigorous physical activity compared to the other games. The ANOVA revealed an overall hypoalgesic effect of the virtual reality games on the forearm, regardless of game type. Results also showed a significant hypoalgesic effect on the thigh following gameplay for Hot Squat, Holopoint, and Relax Walk VR. The magnitude of pain reduction was significantly greater during Hot Squat compared to the other games. Conclusion: Virtual reality gameplay exerted a hypoalgesic effect on experimental pressure pain. Additionally, the data provided evidence of a potential enhanced hypoalgesic effect of physically active virtual reality compared to non-active VR on pressure pain sensitivity.Item The role of deficient pain modulatory systems in the development of persistent post-traumatic headaches following mild traumatic brain injury: an exploratory longitudinal study(BMC, 2020-12-03) Naugle, Kelly M.; Carey, Christopher; Evans, Eric; Saxe, Jonathan; Overman, Ryan; White, Fletcher A.; Kinesiology, School of Health and Human SciencesBackground: Post-traumatic headache (PTH) is one of the most common and long-lasting symptoms following mild traumatic brain injury (TBI). However, the pathological mechanisms underlying the development of persistent PTH remain poorly understood. The primary purpose of this prospective pilot study was to evaluate whether early pain modulatory profiles (sensitization and endogenous pain inhibitory capacity) and psychological factors after mild TBI predict the development of persistent PTH in mild TBI patients. Methods: Adult mild TBI patients recruited from Level I Emergency Department Trauma Centers completed study sessions at 1-2 weeks, 1-month, and 4-months post mild TBI. Participants completed the following outcome measures during each session: conditioned pain modulation to measure endogenous pain inhibitory capacity, temporal summation of pain and pressure pain thresholds of the head to measure sensitization of the head, Pain Catastrophizing Scale, Center for Epidemiological Studies - Depression Scale, and a standardized headache survey. Participants were classified into persistent PTH (PPTH) and no-PPTH groups based on the 4-month data. Results: The results revealed that mild TBI patients developing persistent PTH exhibited significantly diminished pain inhibitory capacity, and greater depression and pain catastrophizing following injury compared to those who do not develop persistent PTH. Furthermore, logistic regression indicated that headache pain intensity at 1-2 weeks and pain inhibitory capacity on the conditioned pain modulation test at 1-2 weeks predicted persistent PTH classification at 4 months post injury. Conclusions: Overall, the results suggested that persistent PTH is characterized by dysfunctional alterations in endogenous pain modulatory function and psychological processes in the early stages following mild TBI, which likely exacerbate risk for the maintenance of PTH.Item Validity of IPhone Apps to Measure Knee Range of Motion in Clinical Settings(Office of the Vice Chancellor for Research, 2015-04-17) Evans, Eric; Streepey, Jake; Bahamonde, RafaelRange of motion (ROM) of joints is a measure of musculoskeletal function in clinical and athletics settings. ROM in uniaxial joints is measured using a two-arm goniometer (GON). Although GON are inexpensive and can be used in different planes, there are limitation in accuracy and reproducibility. New IPhone apps have been developed to measure ROM using photography (PT tools, Dr.Goniometer and Photogoniometer), or the accelerometry and they also provide a permanent record of the measurement. The purpose of this study to compare the accuracy of the several IPhone apps against standard clinical [goniometer (GON)] and laboratory [electro-goniometer (EGON)] methods of measuring ROM. An EGON was attached the knee of 15 subjects knee while the performed five trials of knee extensionflexion). Three photography and one accelerometer based apps were compared against the EGON. The EGON data were compared against the GON used in clinical settings. Intraclass correlation (ICC) between methods and the Bland-Altman method (BAM) of assessing clinical agreement were used to determine validity. The ICC between the EGON and GON was r =.969 and with a BAM showing good clinical agreement between the two techniques. ICC of the photography based apps ranged from (.709-.721) and the accelerometer based goniometer was .671. The results of the BAM showed moderate to poor agreement between the methods, which indicate the some of the apps may not be suitable to use in clinical settings. The small screen size of the IPhone makes it difficult to accurately identify the joints centers. Small errors on placing the joint centers can lead to large errors of the knee joint angle. Accelerometer based apps are difficult to align and can be affected by muscle and adipose tissue of leg. It is possible that photography based apps when used on an IPad will provide better accuracy and be suitable to clinical settings.