- Browse by Author
Browsing by Author "Evan, Andrew P."
Now showing 1 - 10 of 33
Results Per Page
Sort Options
Item Biopsy proven medullary sponge kidney: clinical findings, histopathology, and role of osteogenesis in stone and plaque formation(John Wiley & Sons, Inc., 2015-05) Evan, Andrew P.; Worcester, Elaine M.; Williams, James C., Jr.; Sommer, Andre J.; Lingeman, James E.; Phillips, Carrie L.; Coe, Fredric L.; Department of Anatomy & Cell Biology, IU School of MedicineMedullary sponge kidney (MSK) is associated with recurrent stone formation, but the clinical phenotype is unclear because patients with other disorders may be incorrectly labeled MSK. We studied 12 patients with histologic findings pathognomonic of MSK. All patients had an endoscopically recognizable pattern of papillary malformation, which may be segmental or diffuse. Affected papillae are enlarged and billowy, due to markedly enlarged inner medullary collecting ducts (IMCD), which contain small, mobile ductal stones. Patients had frequent dilation of Bellini ducts, with occasional mineral plugs. Stones may form over white (Randall's) plaque, but most renal pelvic stones are not attached, and have a similar morphology as ductal stones, which are a mixture of calcium oxalate and apatite. Patients had no abnormalities of urinary acidification or acid excretion; the most frequent metabolic abnormality was idiopathic hypercalciuria. Although both Runx2 and Osterix are expressed in papillae of MSK patients, no mineral deposition was seen at the sites of gene expression, arguing against a role of these genes in this process. Similar studies in idiopathic calcium stone formers showed no expression of these genes at sites of Randall's plaque. The most likely mechanism for stone formation in MSK appears to be crystallization due to urinary stasis in dilated IMCD with subsequent passage of ductal stones into the renal pelvis where they may serve as nuclei for stone formation.Item Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease(American Society for Clinical Investigation, 2020-03-09) Curry, Joshua N.; Saurette, Matthew; Askari, Masomeh; Pei, Lei; Filla, Michael B.; Beggs, Megan R.; Rowe, Peter S. N.; Fields, Timothy; Sommer, Andre J.; Tanikawa, Chizu; Kamatani, Yoichiro; Evan, Andrew P.; Totonchi, Mehdi; Alexander, R. Todd; Matsuda, Koichi; Yu, Alan S. L.; Anatomy and Cell Biology, School of MedicineThe major risk factor for kidney stone disease is idiopathic hypercalciuria. Recent evidence implicates a role for defective calcium reabsorption in the renal proximal tubule. We hypothesized that claudin-2, a paracellular cation channel protein, mediates proximal tubule calcium reabsorption. We found that claudin-2–null mice have hypercalciuria due to a primary defect in renal tubule calcium transport and papillary nephrocalcinosis that resembles the intratubular plugs in kidney stone formers. Our findings suggest that a proximal tubule defect in calcium reabsorption predisposes to papillary calcification, providing support for the vas washdown hypothesis. Claudin-2–null mice were also found to have increased net intestinal calcium absorption, but reduced paracellular calcium permeability in the colon, suggesting that this was due to reduced intestinal calcium secretion. Common genetic variants in the claudin-2 gene were associated with decreased tissue expression of claudin-2 and increased risk of kidney stones in 2 large population-based studies. Finally, we describe a family in which males with a rare missense variant in claudin-2 have marked hypercalciuria and kidney stone disease. Our findings indicate that claudin-2 is a key regulator of calcium excretion and a potential target for therapies to prevent kidney stones.Item Comparison of Tissue Injury from Focused Ultrasonic Propulsion of Kidney Stones Versus Extracorporeal Shock Wave Lithotripsy(Elsevier, 2014-01) Connors, Bret A.; Evan, Andrew P.; Blomgren, Philip M.; Hsi, Ryan S.; Harper, Jonathan D.; Sorensen, Mathew D.; Wang, Yak-Nam; Simon, Julianna C.; Paun, Marla; Starr, Frank; Cunitz, Bryan W.; Bailey, Michael R.; Lingeman, James E.; Department of Anatomy & Cell Biology, IU School of MedicinePurpose Focused ultrasonic propulsion is a new non-invasive technique designed to move kidney stones and stone fragments out of the urinary collecting system. However, the extent of tissue injury associated with this technique is not known. As such, we quantitated the amount of tissue injury produced by focused ultrasonic propulsion under simulated clinical treatment conditions, and under conditions of higher power or continuous duty cycles, and compared those results to SWL injury. Materials and Methods A human calcium oxalate monohydrate stone and/or nickel beads were implanted (with ureteroscopy) into 3 kidneys of live pigs (45–55 kg) and repositioned using focused ultrasonic propulsion. Additional pig kidneys were exposed to SWL level pulse intensities or continuous ultrasound exposure of 10 minutes duration (ultrasound probe either transcutaneous or on the kidney). These kidneys were compared to 6 kidneys treated with an unmodified Dornier HM3 Lithotripter (2400 shocks, 120 SWs/min and 24 kV). Histological analysis was performed to assess the volume of hemorrhagic tissue injury created by each technique (% functional renal volume, FRV). Results SWL produced a lesion of 1.56±0.45% FRV. Ultrasonic propulsion produced no detectable lesion with the simulated clinical treatment. A lesion of 0.46±0.37% FRV or 1.15±0.49% FRV could be produced if excessive treatment parameters were used while the ultrasound probe was placed on the kidney. Conclusions Focused ultrasonic propulsion produced no detectable morphological injury to the renal parenchyma when using clinical treatment parameters and produced injury comparable in size to SWL when using excessive treatment parameters.Item Contrasting histopathology and crystal deposits in kidneys of idiopathic stone formers who produce hydroxy apatite, brushite, or calcium oxalate stones(Wiley, 2014-04) Evan, Andrew P.; Lingeman, James E.; Worcester, Elaine M.; Sommer, Andre J.; Phillips, Carrie L.; Williams, James C.; Coe, Fredric L.; Department of Anatomy & Cell Biology, School of MedicineOur previous work has shown that stone formers who form calcium phosphate (CaP) stones that contain any brushite (BRSF) have a distinctive renal histopathology and surgical anatomy when compared with idiopathic calcium oxalate stone formers (ICSF). Here we report on another group of idiopathic CaP stone formers, those forming stone containing primarily hydroxyapatite, in order to clarify in what ways their pathology differs from BRSF and ICSF. Eleven hydroxyapatite stone formers (HASF) (2 males, 9 females) were studied using intra-operative digital photography and biopsy of papillary and cortical regions to measure tissue changes associated with stone formation. Our main finding is that HASF and BRSF differ significantly from each other and that both differ greatly from ICSF. Both BRSF and ICSF patients have significant levels of Randall's plaque compared with HASF. Intra-tubular deposit number is greater in HASF than BRSF and nonexistent in ICSF while deposit size is smaller in HASF than BRSF. Cortical pathology is distinctly greater in BRSF than HASF. Four attached stones were observed in HASF, three in 25 BRSF and 5-10 per ICSF patient. HASF and BRSF differ clinically in that both have higher average urine pH, supersaturation of CaP, and calcium excretion than ICSF. Our work suggests that HASF and BRSF are two distinct and separate diseases and both differ greatly from ICSF.Item Discrepancy Between Stone and Tissue Mineral Type in Patients with Idiopathic Uric Acid Stones(Liebert, 2020-03) Evan, Andrew P.; Coe, Fredric L.; Worcester, Elaine M.; Williams, James C., Jr.; Heiman, Joshua; Bledsoe, Sharon; Philips, Carrie L.; Lingeman, James E.; Anatomy and Cell Biology, School of MedicineObjectives: To describe the papillary pathology found in uric acid (UA) stone formers, and to investigate the mineral form of tissue deposits. Materials and Methods: We studied eight UA stone formers treated with percutaneous nephrolithotomy. Papillae were imaged intraoperatively using digital endoscopy, and cortical and papillary biopsies were taken. Biopsies were analyzed by light microscopy, micro-CT, and microinfrared spectroscopy. Results: As expected, urine pH was generally low. UA supersaturation exceeded one in all but one case, compatible with the stone material. By intraoperative imaging, the renal papillae displayed a heterogeneous mixture of plaque and plugging, ranging from normal to severe. All patients had mineral in ducts of Bellini and inner medullary collecting ducts, mainly apatite with lesser amounts of urate and/or calcium oxalate in some specimens. Papillary and cortical interstitial tissue injury was modest despite the tubule plugging. No instance was found of a stone growing attached to either plaque or plugs. Conclusions: UA stone formers resemble those with ileostomy in having rather low urine pH while forming tubule plugs that contain crystals that can only form at pH values above those of their bulk urine. This discrepancy between tissue mineral deposits and stone type suggests that local tubular pH exceeds that of the bulk urine, perhaps because of localized tubule injury. The manner in which UA stones form and the discordance between tubule crystals and stone type remain open research questions.Item Effect of renal shock wave lithotripsy on the development of metabolic syndrome in a juvenile swine model: a pilot study(Elsevier, 2015-04) Handa, Rajash K.; Liu, Ziyue; Connors, Bret A.; Alloosh, Mouhamad; Basile, David P.; Tune, Johnathan D.; Sturek, Michael; Evan, Andrew P.; Lingeman, James E.; Department of Anatomy & Cell Biology, IU School of MedicinePURPOSE: We performed a pilot study to assess whether renal shock wave lithotripsy influences metabolic syndrome onset and severity. MATERIALS AND METHODS: Three-month-old juvenile female Ossabaw miniature pigs were treated with shock wave lithotripsy (2,000 shock waves at 24 kV with 120 shock waves per minute in 2) or sham shock wave lithotripsy (no shock waves in 2). Shock waves were targeted to the upper pole of the left kidney to model treatment that would also expose the pancreatic tail to shock waves. Pigs were then instrumented to directly measure arterial blood pressure via an implanted radiotelemetry device. They later received a hypercaloric atherogenic diet for about 7 months. Metabolic syndrome development was assessed by the intravenous glucose tolerance test. RESULTS: Metabolic syndrome progression and severity were similar in the sham treated and lithotripsy groups. The only exception arterial blood pressure, which remained relatively constant in sham treated pigs but began to increase at about 2 months towards hypertensive levels in lithotripsy treated pigs. Metabolic data on the 2 groups were pooled to provide a more complete assessment of metabolic syndrome development and progression in this juvenile pig model. The intravenous glucose tolerance test revealed substantial insulin resistance with impaired glucose tolerance within 2 months on the hypercaloric atherogenic diet with signs of further metabolic impairment at 7 months. CONCLUSIONS: These preliminary results suggest that renal shock wave lithotripsy is not a risk factor for worsening glucose tolerance or diabetes mellitus onset. However, it appears to be a risk factor for early onset hypertension in metabolic syndrome.Item Evaluation of an experimental electrohydraulic discharge device for extracorporeal shock wave lithotripsy: Pressure field of sparker array(Acoustical Society of America, 2017-11) Li, Guangyan; Connors, Bret A.; Schaefer, Ray B.; Gallagher, John J.; Evan, Andrew P.; Anatomy and Cell Biology, School of MedicineIn this paper, an extracorporeal shock wave source composed of small ellipsoidal sparker units is described. The sparker units were arranged in an array designed to produce a coherent shock wave of sufficient strength to fracture kidney stones. The objective of this paper was to measure the acoustical output of this array of 18 individual sparker units and compare this array to commercial lithotripters. Representative waveforms acquired with a fiber-optic probe hydrophone at the geometric focus of the sparker array indicated that the sparker array produces a shock wave (P+ ∼40-47 MPa, P- ∼2.5-5.0 MPa) similar to shock waves produced by a Dornier HM-3 or Dornier Compact S. The sparker array's pressure field map also appeared similar to the measurements from a HM-3 and Compact S. Compared to the HM-3, the electrohydraulic technology of the sparker array produced a more consistent SW pulse (shot-to-shot positive pressure value standard deviation of ±4.7 MPa vs ±3.3 MPa).Item Focused Ultrasonic Propulsion of Kidney Stones(Mary Ann Liebert, Inc., 2013-12-09) Sorensen, Mathew D.; Bailey, Michael R.; Hsi, Ryan S.; Cunitz, Bryan W.; Simon, Julianna; Wang, Yak-Nam; Dunmire, Barbrina L.; Paun, Marla; Starr, Frank; Lu, Wei; Evan, Andrew P.; Harper, Jonathan D.; Anatomy and Cell Biology, School of MedicineIntroduction: Our research group is studying a noninvasive transcutaneous ultrasound device to expel small kidney stones or residual post-treatment stone fragments from the kidney.1-3 The purpose of this study was to evaluate the efficacy and safety of ultrasonic propulsion in a live porcine model. Materials and Methods: In domestic female swine (50-60 kg), human stones (calcium oxalate monohydrate) and metalized glass beads (2-8 mm) were ureteroscopically implanted.4 Target stones and beads were placed in the lower half of the kidney and a reference bead was placed in the upper pole. Ultrasonic propulsion was achieved through a single ultrasound system that allowed targeting, stone propulsion, and ultrasound imaging using a Philips HDI C5-2 commercial imaging transducer and a Verasonics diagnostic ultrasound platform. Stone propulsion was achieved through the delivery of 1-second bursts of focused, ultrasound pulses, which consist of 250 finely focused pulses 0.1 milliseconds in duration. Stone propulsion was then observed using fluoroscopy, ultrasound, and visually with the ureteroscope. The kidneys were then perfusion-fixed with glutaraldehyde, embedded in paraffin, sectioned, and stained. Samples were histologically scored for injury by a blinded independent expert. Using the same pulsing scheme, while varying acoustic intensities, an injury threshold and patterns of injury were determined in additional pigs.5,6 Results: Stones were successfully implanted in 14 kidneys. Overall, 17 of 26 (65)% stones/beads were moved the entire distance to the renal pelvis, ureteropelvic junction (UPJ), or proximal ureter. The average procedure time for successfully repositioned stones was 14.2±7.9 minutes with 23±16 push bursts. No gross or histologic damage was identified from the ultrasound propulsion procedure. Under this pulsing scheme, a maximum exposure of 2400 W/cm2 was delivered during each treatment. An intensity threshold of 16,620 W/cm2 was determined at which, above this level, tissue injury consistent with emulsification, necrosis, and hemorrhage appeared to be dose dependent. Conclusions: Ultrasonic propulsion is effective with most stones being relocated to the renal pelvis, UPJ, or proximal ureter in a timely fashion. The procedure appears safe with no evidence of injury. The acoustic intensities delivered at maximum treatment settings are well below the threshold at which injury is observed. The angle and alignment of directional force are the most critical factors determining the efficacy of stone propulsion. We are now pursuing FDA approval for a human feasibility study. No competing financial interests exist. Runtime of video: 5 mins 44 secs.Item Idiopathic hypercalciuria and formation of calcium renal stones(Nature Publishing group, 2016-09) Coe, Fredric L.; Worcester, Elaine M.; Evan, Andrew P.; Anatomy and Cell Biology, School of MedicineThe most common presentation of nephrolithiasis is idiopathic calcium stones in patients without systemic disease. Most stones are primarily composed of calcium oxalate and form on a base of interstitial apatite deposits, known as Randall’s plaque. By contrast some stones are composed largely of calcium phosphate, as either hydroxyapatite or brushite (calcium monohydrogen phosphate), and are usually accompanied by deposits of calcium phosphate in the Bellini ducts. These deposits result in local tissue damage and might serve as a site of mineral overgrowth. Stone formation is driven by supersaturation of urine with calcium oxalate and brushite. The level of supersaturation is related to fluid intake as well as to the levels of urinary citrate and calcium. Risk of stone formation is increased when urine citrate excretion is <400 mg per day, and treatment with potassium citrate has been used to prevent stones. Urine calcium levels >200 mg per day also increase stone risk and often result in negative calcium balance. Reduced renal calcium reabsorption has a role in idiopathic hypercalciuria. Low sodium diets and thiazide-type diuretics lower urine calcium levels and potentially reduce the risk of stone recurrence and bone diseasItem In Vivo Renal Tubule pH in Stone Forming Human Kidneys(Liebert, 2019) Borofsky, Michael S.; Handa, Rajash K.; Evan, Andrew P.; Williams, James C., Jr.; Bledsoe, Sharon; Coe, Fredric L.; Worcester, Elaine M.; Lingeman, James E.; Anatomy and Cell Biology, School of MedicineIntroduction: There is evidence that patients with a history of ileostomies who make acidic urine and form uric acid or calcium oxalate stones may plug some collecting ducts with calcium phosphate (CaP) and urate crystals. This is a paradoxical finding as such minerals should not form at an acid pH. One possible explanation is the presence of acidification defects due to focal damage to inner medullary collecting duct and duct of Bellini (BD) cells. We sought to further investigate this hypothesis through direct measurement of ductal pH in dilated Bellini ducts in patients with ileostomies undergoing percutaneous nephrolithotomy for stone removal. Methods: After obtaining IRB approval, we used a fiber-optic pH microsensor with a 140 µm diameter tip to measure intraluminal pH from the bladder, saline irrigant and dilated BD’s of patients undergoing PCNL. Results: Measurements were taken from three patients meeting inclusion criteria. Measured pH of bladder urine ranged from 4.97 – 5.58 and pH of saline irrigant used during surgery ranged from 5.17 – 5.75. BD measurements were achieved in 11 different BDs. Mean intraductal BD pH was more than 1 unit higher than bulk urine (6.43 ± 0.22 vs. 5.31 ± 0.22, p<0.01). Conclusions: This is the first evidence for focal acidification defects within injured/dilated BD of human kidneys producing a highly acidic bulk phase urine. These results may help explain the paradoxical finding of CaP and urate plugs in dilated ducts of patients with stone forming diseases characterized by highly acidic urine.