- Browse by Author
Browsing by Author "Estrada, Karol"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Differences in the Presentation and Progression of Parkinson's Disease by Sex(Wiley, 2021) Iwaki, Hirotaka; Blauwendraat, Cornelis; Leonard, Hampton L.; Makarious, Mary B.; Kim, Jonggeol J.; Liu, Ganqiang; Maple-Grødem, Jodie; Corvol, Jean-Christophe; Pihlstrøm, Lasse; van Nimwegen, Marlies; Smolensky, Luba; Amondikar, Ninad; Hutten, Samantha J.; Frasier, Mark; Nguyen, Khanh-Dung H.; Rick, Jacqueline; Eberly, Shirley; Faghri, Faraz; Auinger, Peggy; Scott, Kirsten M.; Wijeyekoon, Ruwani; Van Deerlin, Vivianna M.; Hernandez, Dena G.; Gibbs, Raphael J.; Day-Williams, Aaron G.; Brice, Alexis; Alves, Guido; Noyce, Alastair J.; Tysnes, Ole-Bjørn; Evans, Jonathan R.; Breen, David P.; Estrada, Karol; Wegel, Claire E.; Danjou, Fabrice; Simon, David K.; Andreassen, Ole A.; Ravina, Bernard; Toft, Mathias; Heutink, Peter; Bloem, Bastiaan R.; Weintraub, Daniel; Barker, Roger A.; Williams-Gray, Caroline H.; van de Warrenburg, Bart P.; Van Hilten, Jacobus J.; Scherzer, Clemens R.; Singleton, Andrew B.; Nalls, Mike A.; Medical and Molecular Genetics, School of MedicineBackground: Previous studies reported various symptoms of Parkinson's disease (PD) associated with sex. Some were conflicting or confirmed in only one study. Objectives: We examined sex associations to PD phenotypes cross-sectionally and longitudinally in large-scale data. Methods: We tested 40 clinical phenotypes, using longitudinal, clinic-based patient cohorts, consisting of 5946 patients, with a median follow-up of 3.1 years. For continuous outcomes, we used linear regressions at baseline to test sex-associated differences in presentation, and linear mixed-effects models to test sex-associated differences in progression. For binomial outcomes, we used logistic regression models at baseline and Cox regression models for survival analyses. We adjusted for age, disease duration, and medication use. In the secondary analyses, data from 17 719 PD patients and 7588 non-PD participants from an online-only, self-assessment PD cohort were cross-sectionally evaluated to determine whether the sex-associated differences identified in the primary analyses were consistent and unique to PD. Results: Female PD patients had a higher risk of developing dyskinesia early during the follow-up period, with a slower progression in activities of daily living difficulties, and a lower risk of developing cognitive impairments compared with male patients. The findings in the longitudinal, clinic-based cohorts were mostly consistent with the results of the online-only cohort. Conclusions: We observed sex-associated contributions to PD heterogeneity. These results highlight the necessity of future research to determine the underlying mechanisms and importance of personalized clinical management.Item Disentangling the genetics of lean mass(Oxford University Press, 2019-02-01) Karasik, David; Zillikens, M. Carola; Hsu, Yi-Hsiang; Aghdassi, Ali; Akesson, Kristina; Amin, Najaf; Barroso, Inês; Bennett, David A.; Bertram, Lars; Bochud, Murielle; Borecki, Ingrid B.; Broer, Linda; Buchman, Aron S.; Byberg, Liisa; Campbell, Harry; Campos-Obando, Natalia; Cauley, Jane A.; Cawthon, Peggy M.; Chambers, John C.; Chen, Zhao; Cho, Nam H.; Choi, Hyung Jin; Chou, Wen-Chi; Cummings, Steven R.; De Groot, Lisette C. P. G. M.; De Jager, Phillip L.; Demuth, Ilja; Diatchenko, Luda; Econs, Michael J.; Eiriksdottir, Gudny; Enneman, Anke W.; Eriksson, Joel; Eriksson, Johan G.; Estrada, Karol; Evans, Daniel S.; Feitosa, Mary F.; Fu, Mao; Gieger, Christian; Grallert, Harald; Gudnason, Vilmundur; Lenore, Launer J.; Hayward, Caroline; Hofman, Albert; Homuth, Georg; Huffman, Kim M.; Husted, Lise B.; Illig, Thomas; Ingelsson, Erik; Ittermann, Till; Jansson, John-Olov; Johnson, Toby; Biffar, Reiner; Jordan, Joanne M.; Jula, Antti; Karlsson, Magnus; Khaw, Kay-Tee; Kilpeläinen, Tuomas O.; Klopp, Norman; Kloth, Jacqueline S. L.; Koller, Daniel L.; Kooner, Jaspal S.; Kraus, William E.; Kritchevsky, Stephen; Kutalik, Zoltán; Kuulasmaa, Teemu; Kuusisto, Johanna; Laakso, Markku; Lahti, Jari; Lang, Thomas; Langdahl, Bente L.; Lerch, Markus M.; Lewis, Joshua R.; Lill, Christina; Lind, Lars; Lindgren, Cecilia; Liu, Yongmei; Livshits, Gregory; Ljunggren, Östen; Loos, Ruth J. F.; Lorentzon, Mattias; Luan, Jian'an; Luben, Robert N.; Malkin, Ida; McGuigan, Fiona E.; Medina-Gomez, Carolina; Meitinger, Thomas; Melhus, Håkan; Mellström, Dan; Michaëlsson, Karl; Mitchell, Braxton D.; Morris, Andrew P.; Mosekilde, Leif; Nethander, Maria; Newman, Anne B.; O'Connell, Jeffery R.; Oostra, Ben A.; Orwoll, Eric S.; Palotie, Aarno; Peacock, Munro; Perola, Markus; Peters, Annette; Prince, Richard L.; Psaty, Bruce M.; Räikkönen, Katri; Ralston, Stuart H.; Ripatti, Samuli; Rivadeneira, Fernando; Robbins, John A.; Rotter, Jerome I.; Rudan, Igor; Salomaa, Veikko; Satterfield, Suzanne; Schipf, Sabine; Shin, Chan Soo; Smith, Albert V.; Smith, Shad B.; Soranzo, Nicole; Spector, Timothy D.; Stančáková, Alena; Stefansson, Kari; Steinhagen-Thiessen, Elisabeth; Stolk, Lisette; Streeten, Elizabeth A.; Styrkarsdottir, Unnur; Swart, Karin M. A.; Thompson, Patricia; Thomson, Cynthia A.; Thorleifsson, Gudmar; Thorsteinsdottir, Unnur; Tikkanen, Emmi; Tranah, Gregory J.; Uitterlinden, André G.; Van Duijn, Cornelia M.; Van Schoor, Natasja M.; Vandenput, Liesbeth; Vollenweider, Peter; Völzke, Henry; Wactawski-Wende, Jean; Walker, Mark; Wareham, Nicholas J.; Waterworth, Dawn; Weedon, Michael N.; Wichmann, H-Erich.; Widen, Elisabeth; Williams, Frances M. K.; Wilson, James F.; Wright, Nicole C.; Yerges-Armstrong, Laura M.; Yu, Lei; Zhang, Weihua; Zhao, Jing Hua; Zhou, Yanhua; Nielson, Carrie M.; Harris, Tamara B.; Demissie, Serkalem; Kiel, Douglas P.; Ohlsson, Claes; Medicine, School of MedicineBackground: Lean body mass (LM) plays an important role in mobility and metabolic function. We previously identified five loci associated with LM adjusted for fat mass in kilograms. Such an adjustment may reduce the power to identify genetic signals having an association with both lean mass and fat mass. Objectives: To determine the impact of different fat mass adjustments on genetic architecture of LM and identify additional LM loci. Methods: We performed genome-wide association analyses for whole-body LM (20 cohorts of European ancestry with n = 38,292) measured using dual-energy X-ray absorptiometry) or bioelectrical impedance analysis, adjusted for sex, age, age2, and height with or without fat mass adjustments (Model 1 no fat adjustment; Model 2 adjustment for fat mass as a percentage of body mass; Model 3 adjustment for fat mass in kilograms). Results: Seven single-nucleotide polymorphisms (SNPs) in separate loci, including one novel LM locus (TNRC6B), were successfully replicated in an additional 47,227 individuals from 29 cohorts. Based on the strengths of the associations in Model 1 vs Model 3, we divided the LM loci into those with an effect on both lean mass and fat mass in the same direction and refer to those as "sumo wrestler" loci (FTO and MC4R). In contrast, loci with an impact specifically on LM were termed "body builder" loci (VCAN and ADAMTSL3). Using existing available genome-wide association study databases, LM increasing alleles of SNPs in sumo wrestler loci were associated with an adverse metabolic profile, whereas LM increasing alleles of SNPs in "body builder" loci were associated with metabolic protection. Conclusions: In conclusion, we identified one novel LM locus (TNRC6B). Our results suggest that a genetically determined increase in lean mass might exert either harmful or protective effects on metabolic traits, depending on its relation to fat mass.Item Harnessing peripheral DNA methylation differences in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) to reveal novel biomarkers of disease(Springer, 2020-06-15) Vasanthakumar, Aparna; Davis, Justin W.; Idler, Kenneth; Waring, Jeffrey F.; Asque, Elizabeth; Riley-Gillis, Bridget; Grosskurth, Shaun; Srivastava, Gyan; Kim, Sungeun; Nho, Kwangsik; Nudelman, Kelly N. H.; Faber, Kelley; Sun, Yu; Foroud, Tatiana M.; Estrada, Karol; Apostolova, Liana G.; Li, Qingqin S.; Saykin, Andrew J.; for the Alzheimer’s Disease Neuroimaging Initiative (ADNI); Radiology and Imaging Sciences, School of MedicineBackground Alzheimer’s disease (AD) is a chronic progressive neurodegenerative disease impacting an estimated 44 million adults worldwide. The causal pathology of AD (accumulation of amyloid-beta and tau), precedes hallmark symptoms of dementia by more than a decade, necessitating development of early diagnostic markers of disease onset, particularly for new drugs that aim to modify disease processes. To evaluate differentially methylated positions (DMPs) as novel blood-based biomarkers of AD, we used a subset of 653 individuals with peripheral blood (PB) samples in the Alzheimer’s disease Neuroimaging Initiative (ADNI) consortium. The selected cohort of AD, mild cognitive impairment (MCI), and age-matched healthy controls (CN) all had imaging, genetics, transcriptomics, cerebrospinal protein markers, and comprehensive clinical records, providing a rich resource of concurrent multi-omics and phenotypic information on a well-phenotyped subset of ADNI participants. Results In this manuscript, we report cross-diagnosis differential peripheral DNA methylation in a cohort of AD, MCI, and age-matched CN individuals with longitudinal DNA methylation measurements. Epigenome-wide association studies (EWAS) were performed using a mixed model with repeated measures over time with a P value cutoff of 1 × 10−5 to test contrasts of pairwise differential peripheral methylation in AD vs CN, AD vs MCI, and MCI vs CN. The most highly significant differentially methylated loci also tracked with Mini Mental State Examination (MMSE) scores. Differentially methylated loci were enriched near brain and neurodegeneration-related genes (e.g., BDNF, BIN1, APOC1) validated using the genotype tissue expression project portal (GTex). Conclusions Our work shows that peripheral differential methylation between age-matched subjects with AD relative to healthy controls will provide opportunities to further investigate and validate differential methylation as a surrogate of disease. Given the inaccessibility of brain tissue, the PB-associated methylation marks may help identify the stage of disease and progression phenotype, information that would be central to bringing forward successful drugs for AD.Item Meta-Analysis of Genomewide Association Studies Reveals Genetic Variants for Hip Bone Geometry(Wiley, 2019-07) Hsu, Yi-Hsiang; Estrada, Karol; Evangelou, Evangelos; Ackert-Bicknell, Cheryl; Akesson, Kristina; Beck, Thomas; Brown, Suzanne J.; Capellini, Terence; Carbone, Laura; Cauley, Jane; Cheung, Ching-Lung; Cummings, Steven R.; Czerwinski, Stefan; Demissie, Serkalem; Econs, Michael; Evans, Daniel; Farber, Charles; Gautvik, Kaare; Harris, Tamara; Kammerer, Candace; Kemp, John; Koller, Daniel L.; Kung, Annie; Lawlor, Debbie; Lee, Miryoung; Lorentzon, Mattias; McGuigan, Fiona; Medina-Gomez, Carolina; Mitchell, Braxton; Newman, Anne; Nielson, Carrie; Ohlsson, Claes; Peacock, Munro; Reppe, Sjur; Richards, J. Brent; Robbins, John; Sigurdsson, Gunnar; Spector, Timothy D.; Stefansson, Kari; Streeten, Elizabeth; Styrkarsdottir, Unnur; Tobias, Jonathan; Trajanoska, Katerina; Uitterlinden, André; Vandenput, Liesbeth; Wilson, Scott G.; Yerges-Armstrong, Laura; Young, Mariel; Zillikens, Carola; Rivadeneira, Fernando; Kiel, Douglas P.; Karasik, David; Medicine, School of MedicineHip geometry is an important predictor of fracture. We performed a meta-analysis of GWAS studies in adults to identify genetic variants that are associated with proximal femur geometry phenotypes. We analyzed four phenotypes: (i) femoral neck length; (ii) neck-shaft angle; (iii) femoral neck width, and (iv) femoral neck section modulus, estimated from DXA scans using algorithms of hip structure analysis. In the Discovery stage, 10 cohort studies were included in the fixed-effect meta-analysis, with up to 18,719 men and women ages 16 to 93 years. Association analyses were performed with ∼2.5 million polymorphisms under an additive model adjusted for age, body mass index, and height. Replication analyses of meta-GWAS significant loci (at adjusted genomewide significance [GWS], threshold p ≤ 2.6 × 10-8 ) were performed in seven additional cohorts in silico. We looked up SNPs associated in our analysis, for association with height, bone mineral density (BMD), and fracture. In meta-analysis (combined Discovery and Replication stages), GWS associations were found at 5p15 (IRX1 and ADAMTS16); 5q35 near FGFR4; at 12p11 (in CCDC91); 11q13 (near LRP5 and PPP6R3 (rs7102273)). Several hip geometry signals overlapped with BMD, including LRP5 (chr. 11). Chr. 11 SNP rs7102273 was associated with any-type fracture (p = 7.5 × 10-5 ). We used bone transcriptome data and discovered several significant eQTLs, including rs7102273 and PPP6R3 expression (p = 0.0007), and rs6556301 (intergenic, chr.5 near FGFR4) and PDLIM7 expression (p = 0.005). In conclusion, we found associations between several genes and hip geometry measures that explained 12% to 22% of heritability at different sites. The results provide a defined set of genes related to biological pathways relevant to BMD and etiology of bone fragility.