ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "El-Mounayri, Hazim A."

Now showing 1 - 6 of 6
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Advances in Vehicular Aerodynamics
    (2024-05) Dave, Deepam; Dalir, Hamid; El-Mounayri, Hazim A.; Tovar, Andres; Anwar, Sohel
    This article-based research traces the evolution and advancements of vehicular aerodynamic concepts and emphasizes on the significance of vehicle aerodynamics for high-performance vehicles. The thesis further explores the scope of integrating advanced vehicle aerodynamic concepts into consumer vehicles. The thesis aims to point out the significant improvements achieved with the integration of active aerodynamic concepts in terms of both vehicle performance as well as efficiency figures for consumer vehicles. Additionally, exploring the scope for the development of these advanced active aerodynamic systems as third-party modifications is the secondary objective of the presented research. The thesis also highlights the development and integration of unique active aerodynamic systems featured in performance vehicles and analyzes the performance gains achieved using MATLAB program-based simulations supported by a graphical representation of analyzed output data. The study of Active aerodynamic systems for both performance/track-oriented and consumer vehicles remains the primary emphasis for the presented thesis.
  • Loading...
    Thumbnail Image
    Item
    Design of an Origami Patterned Pre-Folded Thin Walled Tubular Structure for Crashworthiness
    (2019-05) Chaudhari, Prathamesh; Tovar, Andres; Nematollahi, Khosrow; El-Mounayri, Hazim A.
    Thin walled tubular structures are widely used in the automotive industry because of its weight to energy absorption advantage. A lot of research has been done in different cross sectional shapes and different tapered designs, with design for manufacturability in mind, to achieve high specific energy absorption. In this study a novel type of tubular structure is proposed, in which predesigned origami initiators are introduced into conventional square tubes. The crease pattern is designed to achieve extensional collapse mode which results in decreasing the initial buckling forces and at the same time acts as a fold initiator, helping to achieve a extensional collapse mode. The influence of various design parameters of the origami pattern on the mechanical properties (crushing force and deceleration) are extensively investigated using finite element modelling. Thus, showing a predictable and stable collapse behavior. This pattern can be stamped out of a thin sheet of material. The results showed that a properly designed origami pattern can consistently trigger a extensional collapse mode which can significantly lower the peak values of crushing forces and deceleration without compromising on the mean values. Also, a comparison has been made with the behavior of proposed origami pattern for extensional mode verses origami pattern with diamond fold.
  • Loading...
    Thumbnail Image
    Item
    The development of polystyrene based microfluidic gas generation system
    (2015-05) Yuanzhi, Cao; Zhu, Likun; Yu, Huidan; El-Mounayri, Hazim A.; Anwar, Sohel
    The purpose of this thesis is to use experimental methods to seek deeper understanding and better performance in the self-circulating self-regulating microfluidic gas generator initially developed in Dr. Zhu’s group, by changing the major features and dimensions in the reaction channel of the device. In order to effectively conduct experiments described above, a microfabrication method that is capable of making new microfluidic devices with low cost, short time period, as well as relatively high accuracy was needed first. Developing such a fabrication method is the major part of this thesis. We initially used patterned polymer films and glass slide, and bonded them together by sequentially aligning and stacking them into a microfluidic device with patterned double-sided tapes. Later we developed a more advanced microfabrication method that used only patterned polystyrene (PS) films. The patterned PS films were obtained from a digital cutter and they were bonded into a microfluidic device by thermopress bonding method that required no heterogeneous bonding agents. This new method did not need manual assembly which greatly improved its precision (~ 100 µm), and it used only PS as device material that has favorable surface wetting property for microfluidics applications. In order to find the optimized microfluidic channel design to improve gas generating performance, we've designed and fabricated microfluidic devices with different channel dimensions using the PS fabrication method. Based on the gas generation testing results of those devices, we were able to come up with the optimal dimensions for the reaction channel that had the best gas generation performance. To obtain a more fundamental understanding about the working mechanism of our device and its bubble dynamics, we have conducted ultrafast X-ray imaging test at Advanced Photon Source (APS), Argonne National Laboratory. High speed (100 KHz) phase contrast images were captured that allowed us to observe directly inside the reaction channel on the cross section view during the self-circulating catalytic reaction. The images provided us with lots of insightful information that in turn helped the dimensional improvement for the microchannel design. The 100 KHz high speed images also gave us useful information about the dynamics of bubble development on a catalyst bed, such as growth and merging of the bubbles.
  • Loading...
    Thumbnail Image
    Item
    Effect of geometric, material and operational parameters on the steady-state belt response for flat belt-drives
    (2015-05) Yildiz, Cagkan; Wasfy, Tamer M.; Tovar, Andres; El-Mounayri, Hazim A.
    This thesis presents a comprehensive study of the effects of material, geometric and operational parameters on flat belt-drives steady-state belt stresses, belt slip, and belt-drive efficiency. The belt stresses include: belt rubber shear, normal, axial and lateral stresses; reinforcements tension force; and tangential and normal belt-pulley contact stresses. Belt slip is measured using the driven over driver pulleys’ angular velocity ratio. Each parameter was varied over a range to understand its impact on the steady-state belt-drive response. The material parameters studied are belt axial stiffness and damping, belt bending stiffness and damping, and belt-pulley friction coefficient. The geometric parameters studied are pulley center distance, pulleys diameter ratio, and belt thickness. The operational parameters studied are the driver pulley angular velocity and the driven pulley opposing torque (load). A high-fidelity flexible multibody dynamics parametric model of a two-pulley belt-drive system was created using a commercial multibody dynamics code. In the model the belt’s rubber matrix is represented using three-dimensional brick elements and the belt’s reinforcements are represented using one dimensional beam elements at the top surface of the belt. An asperity-based Coulomb friction model is used for the friction forces between the pulley and belt. The pulleys are modeled as rigid bodies with a cylindrical contact surface. The equations of motion are integrated using an explicit solution procedure. Unlike prior models which use one-dimensional truss or beam elements for the belt, the present model uses a three-dimensional belt model which introduces the effect of the thickness of the belt rubber matrix (modeled using brick elements). This enables a more accurate prediction of the belt stresses and slip than prior models. This thesis resolves in more details the complex stick-slip friction behavior of an axially flexible belt coupled with the shear effects of a flexible rubber cushion and at the same time shows the effect of the main system parameters on this stick-slip behavior. Some of the important conclusions of the thesis include: (1) the driver pulley has two distinct contact zones - a negative traction zone and a positive traction zone - while only one traction zone is present over the driven pulley; (2) the width of the negative traction zone on the driver pulley increases with the belt-pulley coefficient of friction and decreases with the belt axial stiffness; (3) the maximum belt tension and normal contact stress occur on the driver pulley and increase with the belt thickness, belt axial stiffness, and coefficient of friction; (4) belt-drive energy efficiency increases with the belt axial stiffness, and decreases with belt thickness, belt bending damping, belt operating speed, and operating torque load. The belt-drive modeling methodology presented in this thesis which enables accurate prediction of the belt stresses and slip can in turn be used to more accurately predict the fatigue life, wear life, and energy efficiency of belt-drives.
  • Loading...
    Thumbnail Image
    Item
    Improving Patients Experience in an Emergency Department using Systems Engineering Approach
    (2019-08) Khazaei, Hosein; El-Mounayri, Hazim A.; Anwar, Sohel; Mitchell, Alice
    Healthcare industry in United States of America is facing a big paradox. Although US is a leader in the industry of medical devices, medical practices and medical researches, however there isnt enough satisfaction and quality in performance of US healthcare operations. Despite the big investments and budgets associated with US healthcare, there are big threats to US healthcare operational side, that reduces the quality of care. In this research study, a step by step Systems Engineering approach is applied to improve healthcare delivery process in an Emergency Department of a hospital located in Indianapolis, Indiana. In this study, different type of systems engineering tools and techniques are used to improve the quality of care and patients satisfaction in ED of Eskenazi hospital. Having a simulation model will help to have a better understanding of the ED process and learn more about the bottlenecks of the process. Simulation model is verified and validated using different techniques like applying extreme and moderate conditions and comparing model results with historical data. 4 different what if scenarios are proposed and tested to find out about possible LOS improvements. Additionally, those scenarios are tested in both regular and an increased patient arrival rate. The optimal selected what-if scenario can reduce the LOS by 37 minutes compared to current ED setting. Additionally, by increasing the patient arrival rate patients may stay in the ED up to 6 hours. However, with the proposed ED setting, patients will only spend an additional 106 minutes compared to the regular patient arrival rate.
  • Loading...
    Thumbnail Image
    Item
    Validation of an artificial tooth-periodontal ligament-bone complex for in-vitro orthodontic research
    (2015-08) Favor, Trevor E.; Chen, Jie; El-Mounayri, Hazim A.; Katona, Thomas R.
    Orthodontics research investigates the methods in which tooth displacement may be directed in the tooth-periodontal ligament-bone-complex. In the biological environment, the periodontal ligament is the soft tissue responsible for the absorption of forces on teeth and has a direct connection to tooth mobility. Current research is limited in that it must be conducted in an in-vivo capacity. A major advancement in orthodontics research would be a testing method that allows for the development and analysis of orthodontic devices without a patient present. This study outlines the development and testing methods for the validation of an artificial periodontal ligament to be used in conjunction with an artificial-tooth-periodontal ligament-bone-complex. The study focused on finding the criteria in which consistent results were produced, the mixture that best simulated the human periodontal ligament’s mechanical behavior, and the robustness of the artificial-periodontal ligament-bone-complex. This study utilized a geometrically accurate denture mold filled with varying compositions of an artificial periodontal ligament for testing. Experiments focused on findings of viscoelasticity, curing times, and instantaneous responses of the teeth under direct orthodontic loading, as well as the changes in response from different teeth within the denture mold. Tests confirmed that a mixture composed of 50\% Gasket Sealant No. 2 and 50\% RTV 587 Silicone produced a substance that could adequately serve as an artificial periodontal ligament.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University