- Browse by Author
Browsing by Author "Duan, Yaqian"
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item Ataxia Telangiectasia Mutated Dysregulation Results in Diabetic Retinopathy(Wiley Blackwell (John Wiley & Sons), 2016-02) Bhatwadekar, Ashay D.; Duan, Yaqian; Chakravarthy, Harshini; Korah, Maria; Caballero, Sergio; Busik, Julia V.; Grant, Maria B.; Department of Ophthalmology, IU School of MedicineAtaxia telangiectasia mutated (ATM) acts as a defense against a variety of bone marrow (BM) stressors. We hypothesized that ATM loss in BM-hematopoietic stem cells (HSCs) would be detrimental to both HSC function and microvascular repair while sustained ATM would be beneficial in disease models of diabetes. Chronic diabetes represents a condition associated with HSC depletion and inadequate vascular repair. Gender mismatched chimeras of ATM(-/-) on wild type background were generated and a cohort were made diabetic using streptozotocin (STZ). HSCs from the STZ-ATM(-/-) chimeras showed (a) reduced self-renewal; (b) decreased long-term repopulation; (c) depletion from the primitive endosteal niche; (d) myeloid bias; and (e) accelerated diabetic retinopathy (DR). To further test the significance of ATM in hematopoiesis and diabetes, we performed microarrays on circulating angiogenic cells, CD34(+) cells, obtained from a unique cohort of human subjects with long-standing (>40 years duration) poorly controlled diabetes that were free of DR. Pathway analysis of microarrays in these individuals revealed DNA repair and cell-cycle regulation as the top networks with marked upregulation of ATM mRNA compared with CD34(+) cells from diabetics with DR. In conclusion, our study highlights using rodent models and human subjects, the critical role of ATM in microvascular repair in DR.Item Bone Marrow-Derived Cells Restore Functional Integrity of the Gut Epithelial and Vascular Barriers in a Model of Diabetes and ACE2 Deficiency(AHA, 2019-11-08) Duan, Yaqian; Prasad, Ram; Feng, Dongni; Beli, Eleni; Calzi, Sergio Li; Longhini, Ana Leda F.; Lamendella, Regina; Floyd, Jason L.; Dupont, Mariana; Noothi, Sunil K.; Sreejit, Gopal Krishan; Athmanathan, Baskaran; Wright, Justin; Jensen, Amanda R.; Oudit, Gavin Y.; Markel, Troy A.; Nagareddy, Prabhakara R; Obukhov, Alexander G.; Grant, Maria B.; Anatomy and Cell Biology, School of MedicineRationale: There is incomplete knowledge of the impact of bone marrow (BM) cells on the gut microbiome and gut barrier function. Objective: We postulated that diabetes and systemic angiotensin-converting enzyme 2 (ACE2) deficiency would synergize to adversely impact both the microbiome and gut barrier function. Methods and Results: Bacterial 16S rRNA sequencing and metatranscriptomic analysis were performed on fecal samples from WT, ACE2−/y, Akita (type 1 diabetic, T1D), and ACE2−/y-Akita mice. Gut barrier integrity was assessed by immunofluorescence, and BM cell extravasation into the small intestine was evaluated by flow cytometry. In the ACE2−/y-Akita or Akita mice, the disrupted barrier was associated with reduced levels of myeloid angiogenic cells (MACs), but no increase in inflammatory monocytes was observed within the gut parenchyma. Genomic and metatranscriptomic analysis of the microbiome of ACE2−/y-Akita mice demonstrated a marked increase in peptidoglycan (PGN) producing bacteria. When compared to control cohorts treated with saline, intraperitoneal administration of MACs significantly decreased the microbiome gene expression associated with PGN biosynthesis and restored epithelial and endothelial gut barrier integrity. Also indicative of diabetic gut barrier dysfunction, increased levels of PGN and intestinal fatty acid binding protein-2 (FABP-2) were observed in plasma of human subjects with T1D (n=21) and Type 2 diabetes (T2D, n=23) compared to non-diabetic controls (n=23). Using human retinal endothelial cells, we determined that PGN activates a non-canonical Toll-like receptor-2 (TLR2) associated MyD88-ARNO-ARF6 signaling cascade, resulting in destabilization of p120-catenin and internalization of VE-cadherin as a mechanism of deleterious impact of PGN on the endothelium. Conclusion: We demonstrate for the first time that the defect in gut barrier function and dysbiosis in ACE2−/y-Akita mice can be favorably impacted by exogenous administration of MACs.Item CX3CR1 deficiency accelerates the development of retinopathy in a rodent model of type 1 diabetes(Springer, 2016-11) Beli, Eleni; Dominguez, James M.; Hu, Ping; Thinschmidt, Jeffrey S.; Caballero, Sergio; Calzi, Sergio Li; Luo, Defang; Shanmugam, Sumathi; Salazar, Tatiana; Duan, Yaqian; Boulton, Michael E.; Mohr, Susanna; Abcouwer, Steven F.; Saban, Daniel R.; Harrison, Jeffrey K.; Grant, Maria B.; Ophthalmology, School of MedicineIn this study, the role of CX3CR1 in the progression of diabetic retinopathy (DR) was investigated. The retinas of wild type (WT), CX3CR1 null (CX3CR1gfp/gfp, KO) and heterozygous (CX3CR1+/gfp, Het) mice were compared in the presence and absence of streptozotocin (STZ) induced diabetes. CX3CR1 deficiency in STZ-KO increased vascular pathology at 4 months of diabetes, as a significant increase in acellular capillaries was observed only in the STZ-KO group. CX3CR1 deficiency and diabetes had similar effects on retinal neurodegeneration measured by an increase in DNA fragmentation. Retinal vascular pathology in STZ-KO mice was associated with increased numbers of monocyte-derived macrophages in the retina. Furthermore, compared to STZ-WT, STZ-KO mice exhibited increased numbers of inflammatory monocytes in the bone marrow and impaired homing of monocytes to the spleen. Induction of retinal IL-10 expression by diabetes was significantly less in KO mice, and when bone marrow-derived macrophages from KO mice were maintained in high glucose they expressed significantly less IL-10 and more TNF-α in response to LPS stimulation. These findings support that CX3CR1 deficiency accelerates the development of vascular pathology in DR through increased recruitment of proinflammatory myeloid cells that demonstrate reduced expression of anti-inflammatory IL-10.Item Electroacupuncture Promotes Central Nervous System-Dependent Release of Mesenchymal Stem Cells(Wiley, 2017-05) Salazar, Tatiana E.; Richardson, Matthew R.; Beli, Eleni; Ripsch, Matthew S.; George, John; Kim, Youngsook; Duan, Yaqian; Moldovan, Leni; Yan, Yuanqing; Bhatwadekar, Ashay; Jadhav, Vaishnavi; Smith, Jared A.; McGorray, Susan; Bertone, Alicia L.; Traktuev, Dmitri O.; March, Keith L.; Colon-Perez, Luis M.; Avin, Keith; Sims, Emily; Mund, Julie A.; Case, Jamie; Deng, Shaolin; Kim, Min Su; McDavitt, Bruce; Boulton, Michael E.; Thinschmidt, Jeffrey; Calzi, Sergio Li; Fitz, Stephanie D.; Fuchs, Robyn K.; Warden, Stuart J.; McKinley, Todd; Shekhar, Anantha; Febo, Marcelo; Johnson, Phillip L.; Chang, Lung Ji; Gao, Zhanguo; Kolonin, Mikhail G.; Lai, Song; Ma, Jinfeng; Dong, Xinzhong; White, Fletcher A.; Xie, Huisheng; Yoder, Mervin C.; Grant, Maria B.; Ophthalmology, School of MedicineElectroacupuncture (EA) performed in rats and humans using limb acupuncture sites, LI-4 and LI-11, and GV-14 and GV-20 (humans) and Bai-hui (rats) increased functional connectivity between the anterior hypothalamus and the amygdala and mobilized mesenchymal stem cells (MSCs) into the systemic circulation. In human subjects, the source of the MSC was found to be primarily adipose tissue, whereas in rodents the tissue sources were considered more heterogeneous. Pharmacological disinhibition of rat hypothalamus enhanced sympathetic nervous system (SNS) activation and similarly resulted in a release of MSC into the circulation. EA-mediated SNS activation was further supported by browning of white adipose tissue in rats. EA treatment of rats undergoing partial rupture of the Achilles tendon resulted in reduced mechanical hyperalgesia, increased serum interleukin-10 levels and tendon remodeling, effects blocked in propranolol-treated rodents. To distinguish the afferent role of the peripheral nervous system, phosphoinositide-interacting regulator of transient receptor potential channels (Pirt)-GCaMP3 (genetically encoded calcium sensor) mice were treated with EA acupuncture points, ST-36 and LIV-3, and GV-14 and Bai-hui and resulted in a rapid activation of primary sensory neurons. EA activated sensory ganglia and SNS centers to mediate the release of MSC that can enhance tissue repair, increase anti-inflammatory cytokine production and provide pronounced analgesic relief.Item Hematopoietic stem/progenitor involvement in retinal microvascular repair during diabetes: Implications for bone marrow rejuvenation(Elsevier, 2017-10) Bhatwadekar, Ashay D.; Duan, Yaqian; Korah, Maria; Thinschmidt, Jeffrey S.; Hu, Ping; Leley, Sameer P.; Caballero, Sergio; Shaw, Lynn; Busik, Julia; Grant, Maria B.; Ophthalmology, School of MedicineThe widespread nature of diabetes affects all organ systems of an individual including the bone marrow. Long-term damage to the cellular and extracellular components of the bone marrow leads to a rapid decline in the bone marrow-hematopoietic stem/progenitor cells (HS/PCs) compartment. This review will highlight the importance of bone marrow microenvironment in maintaining bone marrow HS/PC populations and the contribution of these key populations in microvascular repair during the natural history of diabetes. The autonomic nervous system can initiate and propagate bone marrow dysfunction in diabetes. Systemic pharmacological strategies designed to protect the bone marrow-HS/PC population from diabetes induced-oxidative stress and advanced glycation end product accumulation represent a new approach to target diabetic retinopathy progression. Protecting HS/PCs ensures their participation in vascular repair and reduces the risk of vasogdegeneration occurring in the retina.Item Long-Term Diabetic Microenvironment Augments the Decay Rate of Capsaicin-Induced Currents in Mouse Dorsal Root Ganglion Neurons(MDPI, 2019-02-21) Chen, Xingjuan; Duan, Yaqian; Riley, Ashley M.; Welch, Megan A.; White, Fletcher A.; Grant, Maria B.; Obukhov, Alexander G.; Cellular and Integrative Physiology, School of MedicineIndividuals with end-stage diabetic peripheral neuropathy present with decreased pain sensation. Transient receptor potential vanilloid type 1 (TRPV1) is implicated in pain signaling and resides on sensory dorsal root ganglion (DRG) neurons. We investigated the expression and functional activity of TRPV1 in DRG neurons of the Ins2+/Akita mouse at 9 months of diabetes using immunohistochemistry, live single cell calcium imaging, and whole-cell patch-clamp electrophysiology. 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence assay was used to determine the level of Reactive Oxygen Species (ROS) in DRGs. Although TRPV1 expressing neuron percentage was increased in Ins2+/Akita DRGs at 9 months of diabetes compared to control, capsaicin-induced Ca2+ influx was smaller in isolated Ins2+/Akita DRG neurons, indicating impaired TRPV1 function. Consistently, capsaicin-induced Ca2+ influx was decreased in control DRG neurons cultured in the presence of 25 mM glucose for seven days versus those cultured with 5.5 mM glucose. The high glucose environment increased cytoplasmic ROS accumulation in cultured DRG neurons. Patch-clamp recordings revealed that capsaicin-activated currents decayed faster in isolated Ins2+/Akita DRG neurons as compared to those in control neurons. We propose that in poorly controlled diabetes, the accelerated rate of capsaicin-sensitive TRPV1 current decay in DRG neurons decreases overall TRPV1 activity and contributes to peripheral neuropathy.Item Loss of Angiotensin-Converting Enzyme 2 Exacerbates Diabetic Retinopathy by Promoting Bone Marrow Dysfunction(Wiley, 2018-09) Duan, Yaqian; Beli, Eleni; Calzi, Sergio Li; Quigley, Judith L.; Miller, Rehae C.; Moldovan, Leni; Feng, Dongni; Salazar, Tatiana E.; Hazra, Sugata; Al-Sabah, Jude; Chalam, Kakarla V.; Trinh, Thao Le Phuong; Meroueh, Marya; Markel, Troy A.; Murray, Matthew C.; Vyas, Ruchi J.; Boulton, Michael E.; Parsons-Wingerter, Patricia; Oudit, Gavin Y.; Obukhov, Alexander G.; Grant, Maria B.; Cellular and Integrative Physiology, School of MedicineAngiotensin-converting enzyme 2 (ACE2) is the primary enzyme of the vasoprotective axis of the renin angiotensin system (RAS). We tested the hypothesis that loss of ACE2 would exacerbate diabetic retinopathy by promoting bone marrow dysfunction. ACE2-/y were crossed with Akita mice, a model of type 1 diabetes. When comparing the bone marrow of the ACE2-/y-Akita mice to that of Akita mice, we observed a reduction of both short-term and long-term repopulating hematopoietic stem cells, a shift of hematopoiesis towards myelopoiesis, and an impairment of lineage-c-kit+ hematopoietic stem/progenitor cell (HS/PC) migration and proliferation. Migratory and proliferative dysfunction of these cells was corrected by exposure to angiotensin-1–7 (Ang-1–7), the protective peptide generated by ACE2. Over the duration of diabetes examined, ACE2 deficiency led to progressive reduction in electrical responses assessed by electroretinography and to increases in neural infarcts observed by fundus photography. Compared to Akita mice, ACE2-/y-Akita at 9-months of diabetes showed an increased number of acellular capillaries indicative of more severe diabetic retinopathy. In diabetic and control human subjects, CD34+ cells, a key bone marrow HS/PC population, were assessed for changes in mRNA levels for MAS, the receptor for Ang-1–7. Levels were highest in CD34+ cells from diabetics without retinopathy. Higher serum Ang-1–7 levels predicted protection from development of retinopathy in diabetics. Treatment with Ang-1–7 or alamandine restored the impaired migration function of CD34+ cells from subjects with retinopathy. These data support that activation of the protective RAS within HS/PCs may represent a therapeutic strategy for prevention of diabetic retinopathy.Item Loss of the protective arm of renin-angiotensin-system results in hematopoietic stem / progenitor cell defects, gut dysbiosis and retinopathy in diabetes(2017-12-11) Duan, Yaqian; Grant, Maria B.; Sturek, Michael; Yoder, Mervin C.; Bhatwadekar, Ashay D.; Clauss, MatthiasAngiotensin-converting enzyme 2 (ACE2) is the primary enzyme of the vasoprotective axis of the renin-angiotensin system (RAS). We tested the hypothesis that the protective arm of the RAS axis can i) act to maintain homeostasis in the diabetic bone marrow stem cell compartment, ii) regulate the reparative function of the hematopoietic stem/progenitor cells (HSPCs) and iii) modulate the gut microbiota composition. All processes could influence the development of diabetic retinopathy. Diabetic ACE2 knockout (KO)/C57BL/6-Ins2WT/C96Y (Akita) mice were examined at 3 and 9 months after the onset of diabetes and compared to age-matched controls. Both ACE2KO-Akita and Akita cohorts showed reduced retinal thickness by optical coherence tomography at 9 months of diabetes. The absence of ACE2 in 9-month diabetic mice led to an accelerated increase in acellular capillaries, a hallmark feature of diabetic retinopathy. The absence of ACE2 also caused a reduction of both long-term and short-term repopulating HSPCs in the diabetic bone marrow at 9 months of diabetes. Reparative function studies showed that ACE2KO exacerbated diabetes-induced impairment of lineage-c-kit+ HSPC migration and proliferation as early as 3-month of diabetes. HSPCs from both early and late stage diabetic mice, pretreated with Ang-(1-7) or alamandine (two downstream peptides of ACE2) showed restored migration and proliferation. The gut microbiota has been implicated in the pathogenesis of diabetes. Analysis of the gut microbiome also revealed a distinct bacterial profile in ACE2KO-Akita group, with a great diversity of bacterial types that were previously reported to contribute to diabetic pathogenesis, including Tenericutes at the phylum level and Mollicutes at the class level, and with an activation of peptidoglycan biosynthesis pathways. Flow cytometry analysis showed that loss of ACE2 led to less infiltration of circulating angiogenic cells in the gut which may lead to an increased endothelial cell permeability in the intestinal endothelium. This leakage into the blood may promote systemic inflammation known to contribute to the pathogenesis of diabetic retinopathy. These data suggested a loss of the protective arm of RAS contributes to the impairment of HSPCs and alteration of gut microbiota, both of which may contribute to the development of diabetic retinopathy.Item Microbial Signatures in The Rodent Eyes With Retinal Dysfunction and Diabetic Retinopathy(Association for Research in Vision and Ophthalmology, 2022) Prasad, Ram; Asare-Bediko, Bright; Harbour, Angela; Floyd, Jason L.; Chakraborty, Dibyendu; Duan, Yaqian; Lamendella, Regina; Wright, Justin; Grant, Maria B.; Anatomy, Cell Biology and Physiology, School of MedicinePurpose: The gut microbiome has been linked to disease pathogenesis through their interaction in metabolic, endocrine, and immune functions. The goal of this study was to determine whether the gut and plasma microbiota could transfer microbes to the retina in type 1 diabetic mice with retinopathy. Methods: We analyzed the fecal, plasma, whole globe, and retina microbiome in Akita mice and compared with age-matched wild-type (WT) mice using 16S rRNA sequencing and metatranscriptomic analysis. To eliminate the contribution of the ocular surface and plasma microbiome, mice were perfused with sterile saline solution, the whole globes were extracted, and the neural retina was removed under sterile conditions for retinal microbiome. Results: Our microbiome analysis revealed that Akita mice demonstrated a distinct pattern of microbes within each source: feces, plasma, whole globes, and retina. WT mice and Akita mice experienced transient bacteremia in the plasma and retina. Bacteria were identified in the retina of the Akita mice, specifically Corynebacterium, Pseudomonas, Lactobacillus, Staphylococcus, Enterococcus, and Bacillus. Significantly increased levels of peptidoglycan (0.036 ± 0.001 vs. 0.023 ± 0.002; P < 0.002) and TLR2 (3.47 ± 0.15 vs. 1.99 ± 0.07; P < 0.0001) were observed in the retina of Akita mice compared to WT. Increased IBA+ cells in the retina, reduced a- and b-waves on electroretinography, and increased acellular capillary formation demonstrated the presence of retinopathy in the Akita cohort compared to WT mice. Conclusions: Together, our findings suggest that transient bacteremia exists in the plasma and retina of both cohorts. The bacteria found in Akita mice are distinct from WT mice and may contribute to development of retinal inflammation and barrier dysfunction in retinopathy.Item Peripheral blood-derived mesenchymal stem cells demonstrate immunomodulatory potential for therapeutic use in horses(PLOS, 2019-03-14) Longhini, Ana Leda F.; Salazar, Tatiana E.; Vieira, Cristiano; Trinh, Thao; Duan, Yaqian; Pay, Louise M.; Li Calzi, Sergio; Losh, Megan; Johnston, Nancy A.; Xie, Huisheng; Kim, Minsu; Hunt, Robert J.; Yoder, Mervin C.; Santoro, Domenico; McCarrel, Taralyn M.; Grant, Maria B.; Ophthalmology, School of MedicinePreviously, we showed that mesenchymal stem cells (MSC) can be mobilized into peripheral blood using electroacupuncture (EA) at acupoints, LI-4, LI-11, GV-14, and GV-20. The purpose of this study was to determine whether EA-mobilized MSC could be harvested and expanded in vitro to be used as an autologous cell therapy in horses. Peripheral blood mononuclear cells (PBMC) isolated from young and aged lame horses (n = 29) showed a marked enrichment for MSCs. MSC were expanded in vitro (n = 25) and administered intravenously at a dose of 50 x 106 (n = 24). Treatment resulted in significant improvement in lameness as assessed by the American Association of Equine Practitioners (AAEP) lameness scale (n = 23). MSCs exhibited immunomodulatory function by inhibition of lymphocyte proliferation and induction of IL-10. Intradermal testing showed no immediate or delayed immune reactions to MSC (1 x 106 to 1 x 104). In this study, we demonstrated an efficient, safe and reproducible method to mobilize and expand, in vitro, MSCs in sufficiently high concentrations for therapeutic administration. We confirm the immunomodulatory function of these cells in vitro. This non-pharmacological and non-surgical strategy for stem cell harvest has a broad range of biomedical applications and represents an improved clinically translatable and economical cell source for humans.