- Browse by Author
Browsing by Author "Duan, Jiali"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Multi-Label Medical Image Retrieval Via Learning Multi-Class Similarity(SSRN, 2022) Guo, Xiaoyuan; Duan, Jiali; Gichoya, Judy Wawira; Trivedi, Hari; Purkayastha, Saptarshi; Sharma, Ashish; Banerjee, Imon; BioHealth Informatics, School of Informatics and ComputingIntroduction: Multi-label image retrieval is a challenging problem in the medical area. First, compared to natural images, labels in the medical domain exhibit higher class-imbalance and much nuanced variations. Second, pair-based sampling for positives and negatives during similarity optimization are ambiguous in the multi-label setting, as samples with the same set of labels are limited. Methods: To address the aforementioned challenges, we propose a proxy-based multi-class similarity (PMS) framework, which compares and contrasts samples by comparing their similarities with the discovered proxies. In this way, samples of different sets of label attributes can be utilized and compared indirectly, without the need for complicated sampling. PMS learns a class-wise feature decomposition and maintains a memory bank for positive features from each class. The memory bank keeps track of the latest features, used to compute the class proxies. We compare samples based on their similarity distributions against the proxies, which provide a more stable mean against noise. Results: We benchmark over 10 popular metric learning baselines on two public chest X-ray datasets and experiments show consistent stability of our approach under both exact and non-exact match settings. Conclusions: We proposed a methodology for multi-label medical image retrieval and design a proxy-based multi-class similarity metric, which compares and contrasts samples based on their similarity distributions with respect to the class proxies. With no perquisites, the metrics can be applied to various multi-label medical image applications. The implementation code repository will be publicly available after acceptance.Item OSCARS: An Outlier-Sensitive Content-Based Radiography Retrieval System(arXiv, 2022) Guo, Xiaoyuan; Duan, Jiali; Purkayastha, Saptarshi; Trivedi, Hari; Gichoya, Judy Wawira; Banerjee, Imon; BioHealth Informatics, School of Informatics and ComputingImproving the retrieval relevance on noisy datasets is an emerging need for the curation of a large-scale clean dataset in the medical domain. While existing methods can be applied for class-wise retrieval (aka. inter-class), they cannot distinguish the granularity of likeness within the same class (aka. intra-class). The problem is exacerbated on medical external datasets, where noisy samples of the same class are treated equally during training. Our goal is to identify both intra/inter-class similarities for fine-grained retrieval. To achieve this, we propose an Outlier-Sensitive Content-based rAdiologhy Retrieval System (OSCARS), consisting of two steps. First, we train an outlier detector on a clean internal dataset in an unsupervised manner. Then we use the trained detector to generate the anomaly scores on the external dataset, whose distribution will be used to bin intra-class variations. Second, we propose a quadruplet (a, p, nintra, ninter) sampling strategy, where intra-class negatives nintra are sampled from bins of the same class other than the bin anchor a belongs to, while niner are randomly sampled from inter-classes. We suggest a weighted metric learning objective to balance the intra and inter-class feature learning. We experimented on two representative public radiography datasets. Experiments show the effectiveness of our approach.