- Browse by Author
Browsing by Author "Dighe, Ashveena L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Participant-Centered Approach to Understanding Risks and Benefits of Participation in Research Informed by the Kidney Precision Medicine Project(Elsevier, 2022) Butler, Catherine R.; Appelbaum, Paul S.; Ascani, Heather; Aulisio, Mark; Campbell, Catherine E.; de Boer, Ian H.; Dighe, Ashveena L.; Hall, Daniel E.; Himmelfarb, Jonathan; Knight, Richard; Mehl, Karla; Murugan, Raghavan; Rosas, Sylvia E.; Sedor, John R.; O'Toole, John F.; Tuttle, Katherine R.; Waikar, Sushrut S.; Freeman, Michael; Kidney Precision Medicine Project; Medicine, School of MedicineAn understanding of the ethical underpinnings of human subjects research that involves some risk to participants without anticipated direct clinical benefit-such as the kidney biopsy procedure as part of the Kidney Precision Medicine Project (KPMP)-requires a critical examination of the risks as well as the diverse set of countervailing potential benefits to participants. This kind of deliberation has been foundational to the development and conduct of the KPMP. Herein, we use illustrative features of this research paradigm to develop a more comprehensive conceptualization of the types of benefits that may be important to research participants, including respecting pluralistic values, supporting the opportunity to act altruistically, and enhancing benefits to a participant's community. This approach may serve as a model to help researchers, ethicists, and regulators to identify opportunities to better respect and support participants in future research that entails some risk to these participants as well as to improve the quality of research for people with kidney disease.Item Rationale and design of the Kidney Precision Medicine Project(Elsevier, 2021) de Boer, Ian H.; Alpers, Charles E.; Azeloglu, Evren U.; Balis, Ulysses G. J.; Barasch, Jonathan M.; Barisoni, Laura; Blank, Kristina N.; Bomback, Andrew S.; Brown, Keith; Dagher, Pierre C.; Dighe, Ashveena L.; Eadon, Michael T.; El-Achkar, Tarek M.; Gaut, Joseph P.; Hacohen, Nir; He, Yongqun; Hodgin, Jeffrey B.; Jain, Sanjay; Kellum, John A.; Kiryluk, Krzysztof; Knight, Richard; Laszik, Zoltan G.; Lienczewski, Chrysta; Mariani, Laura H.; McClelland, Robyn L.; Menez, Steven; Moledina, Dennis G.; Mooney, Sean D.; O'Toole, John F.; Palevsky, Paul M.; Parikh, Chirag R.; Poggio, Emilio D.; Rosas, Sylvia E.; Rosengart, Matthew R.; Sarwal, Minnie M.; Schaub, Jennifer A.; Sedor, John R.; Sharma, Kumar; Steck, Becky; Toto, Robert D.; Troyanskaya, Olga G.; Tuttle, Katherine R.; Vazquez, Miguel A.; Waikar, Sushrut S.; Williams, Kayleen; Wilson, Francis Perry; Zhang, Kun; Iyengar, Ravi; Kretzler, Matthias; Himmelfarb, Jonathan; Kidney Precision Medicine Project; Medicine, School of MedicineChronic kidney disease (CKD) and acute kidney injury (AKI) are common, heterogeneous, and morbid diseases. Mechanistic characterization of CKD and AKI in patients may facilitate a precision-medicine approach to prevention, diagnosis, and treatment. The Kidney Precision Medicine Project aims to ethically and safely obtain kidney biopsies from participants with CKD or AKI, create a reference kidney atlas, and characterize disease subgroups to stratify patients based on molecular features of disease, clinical characteristics, and associated outcomes. An additional aim is to identify critical cells, pathways, and targets for novel therapies and preventive strategies. This project is a multicenter prospective cohort study of adults with CKD or AKI who undergo a protocol kidney biopsy for research purposes. This investigation focuses on kidney diseases that are most prevalent and therefore substantially burden the public health, including CKD attributed to diabetes or hypertension and AKI attributed to ischemic and toxic injuries. Reference kidney tissues (for example, living-donor kidney biopsies) will also be evaluated. Traditional and digital pathology will be combined with transcriptomic, proteomic, and metabolomic analysis of the kidney tissue as well as deep clinical phenotyping for supervised and unsupervised subgroup analysis and systems biology analysis. Participants will be followed prospectively for 10 years to ascertain clinical outcomes. Cell types, locations, and functions will be characterized in health and disease in an open, searchable, online kidney tissue atlas. All data from the Kidney Precision Medicine Project will be made readily available for broad use by scientists, clinicians, and patients.