- Browse by Author
Browsing by Author "DiFiori, John P."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Acute White-Matter Abnormalities in Sports-Related Concussion: A Diffusion Tensor Imaging Study from the NCAA-DoD CARE Consortium(Mary Ann Liebert, 2018-11-15) Mustafi, Sourajit Mitra; Harezlak, Jaroslaw; Koch, Kevin M.; Nencka, Andrew S.; Meier, Timothy B.; West, John D.; Giza, Christopher C.; DiFiori, John P.; Guskiewicz, Kevin M.; Mihalik, Jason P.; LaConte, Stephen M.; Duma, Stefan M.; Broglio, Steven P.; Saykin, Andrew J.; McCrea, Michael; McAllister, Thomas W.; Wu, Yu-Chien; Radiology and Imaging Sciences, School of MedicineSports-related concussion (SRC) is an important public health issue. Although standardized assessment tools are useful in the clinical management of acute concussion, the underlying pathophysiology of SRC and the time course of physiological recovery after injury remain unclear. In this study, we used diffusion tensor imaging (DTI) to detect white matter alterations in football players within 48 h after SRC. As part of the NCAA-DoD CARE Consortium study of SRC, 30 American football players diagnosed with acute concussion and 28 matched controls received clinical assessments and underwent advanced magnetic resonance imaging scans. To avoid selection bias and partial volume effects, whole-brain skeletonized white matter was examined by tract-based spatial statistics to investigate between-group differences in DTI metrics and their associations with clinical outcome measures. Mean diffusivity was significantly higher in brain white matter of concussed athletes, particularly in frontal and subfrontal long white matter tracts. In the concussed group, axial diffusivity was significantly correlated with the Brief Symptom Inventory and there was a similar trend with the symptom severity score of the Sport Concussion Assessment Tool. In addition, concussed athletes with higher fractional anisotropy performed better on the cognitive component of the Standardized Assessment of Concussion. Overall, the results of this study are consistent with the hypothesis that SRC is associated with changes in white matter tracts shortly after injury, and these differences are correlated clinically with acute symptoms and functional impairments.Item Comparison of Head Impact Exposure Between Concussed Football Athletes and Matched Controls: Evidence for a Possible Second Mechanism of Sport-Related Concussion(Springer, 2018) Stemper, Brian D.; Shah, Alok S.; Harezlak, Jaroslaw; Rowson, Steven; Mihalik, Jason P.; Duma, Stefan M.; Riggen, Larry D.; Brooks, Alison; Cameron, Kenneth L.; Campbell, Darren; DiFiori, John P.; Giza, Christopher C.; Guskiewicz, Kevin M.; Jackson, Jonathan; McGinty, Gerald T.; Svoboda, Steven J.; McAllister, Thomas W.; Broglio, Steven P.; McCrea, Michael; Psychiatry, School of MedicineStudies of football athletes have implicated repetitive head impact exposure in the onset of cognitive and brain structural changes, even in the absence of diagnosed concussion. Those studies imply accumulating damage from successive head impacts reduces tolerance and increases risk for concussion. Support for this premise is that biomechanics of head impacts resulting in concussion are often not remarkable when compared to impacts sustained by athletes without diagnosed concussion. Accordingly, this analysis quantified repetitive head impact exposure in a cohort of 50 concussed NCAA Division I FBS college football athletes compared to controls that were matched for team and position group. The analysis quantified the number of head impacts and risk weighted exposure both on the day of injury and for the season to the date of injury. 43% of concussed athletes had the most severe head impact exposure on the day of injury compared to their matched control group and 46% of concussed athletes had the most severe head impact exposure for the season to the date of injury compared to their matched control group. When accounting for date of injury or season to date of injury, 72% of all concussed athletes had the most or second most severe head impact exposure compared to their matched control group. These trends associating cumulative head impact exposure with concussion onset were stronger for athletes that participated in a greater number of contact activities. For example, 77% of athletes that participated in ten or more days of contact activities had greater head impact exposure than their matched control group. This unique analysis provided further evidence for the role of repetitive head impact exposure as a predisposing factor for the onset of concussion. The clinical implication of these findings supports contemporary trends of limiting head impact exposure for college football athletes during practice activities in an effort to also reduce risk of concussive injury.Item Longitudinal white-matter abnormalities in sports-related concussion: A diffusion MRI study(Wolters Kluwer, 2020-08) Wu, Yu-Chien; Harezlak, Jaroslaw; Elsaid, Nahla M. H.; Lin, Zikai; Wen, Qiuting; Mustafi, Sourajit M.; Riggen, Larry D.; Koch, Kevin M.; Nencka, Andrew S.; Meier, Timothy B.; Mayer, Andrew R.; Wang, Yang; Giza, Christopher C.; DiFiori, John P.; Guskiewicz, Kevin M.; Mihalik, Jason P.; LaConte, Stephen M.; Duma, Stefan M.; Broglio, Steven P.; Saykin, Andrew J.; McCrea, Michael A.; McAllister, Thomas W.; Radiology and Imaging Sciences, School of MedicineObjective To study longitudinal recovery trajectories of white matter after sports-related concussion (SRC) by performing diffusion tensor imaging (DTI) on collegiate athletes who sustained SRC. Methods Collegiate athletes (n = 219, 82 concussed athletes, 68 contact-sport controls, and 69 non–contact-sport controls) were included from the Concussion Assessment, Research and Education Consortium. The participants completed clinical assessments and DTI at 4 time points: 24 to 48 hours after injury, asymptomatic state, 7 days after return-to-play, and 6 months after injury. Tract-based spatial statistics was used to investigate group differences in DTI metrics and to identify white-matter areas with persistent abnormalities. Generalized linear mixed models were used to study longitudinal changes and associations between outcome measures and DTI metrics. Cox proportional hazards model was used to study effects of white-matter abnormalities on recovery time. Results In the white matter of concussed athletes, DTI-derived mean diffusivity was significantly higher than in the controls at 24 to 48 hours after injury and beyond the point when the concussed athletes became asymptomatic. While the extent of affected white matter decreased over time, part of the corpus callosum had persistent group differences across all the time points. Furthermore, greater elevation of mean diffusivity at acute concussion was associated with worse clinical outcome measures (i.e., Brief Symptom Inventory scores and symptom severity scores) and prolonged recovery time. No significant differences in DTI metrics were observed between the contact-sport and non–contact-sport controls. Conclusions Changes in white matter were evident after SRC at 6 months after injury but were not observed in contact-sport exposure. Furthermore, the persistent white-matter abnormalities were associated with clinical outcomes and delayed recovery timeItem Prevalence of Potentially Clinically Significant Magnetic Resonance Imaging Findings in Athletes with and without Sport-Related Concussion(Mary Ann Liebert, 2019-05-22) Klein, Andrew P.; Tetzlaff, Julie E.; Bonis, Joshua M.; Nelson, Lindsay D.; Mayer, Andrew R.; Huber, Daniel L.; Harezlak, Jaroslaw; Mathews, Vincent P.; Ulmer, John L.; Sinson, Grant P.; Nencka, Andrew S.; Koch, Kevin M.; Wu, Yu-Chien; Saykin, Andrew J.; DiFiori, John P.; Giza, Christopher C.; Goldman, Joshua; Guskiewicz, Kevin M.; Mihalik, Jason P.; Duma, Stefan M.; Rowson, Steven; Brooks, Alison; Broglio, Steven P.; McAllister, Thomas; McCrea, Michael A.; Meier, Timothy B.; Radiology and Imaging Sciences, School of MedicinePrevious studies have shown that mild traumatic brain injury (mTBI) can cause abnormalities in clinically relevant magnetic resonance imaging (MRI) sequences. No large-scale study, however, has prospectively assessed this in athletes with sport-related concussion (SRC). The aim of the current study was to characterize and compare the prevalence of acute, trauma-related MRI findings and clinically significant, non-specific MRI findings in athletes with and without SRC. College and high-school athletes were prospectively enrolled and participated in scanning sessions between January 2015 through August 2017. Concussed contact sport athletes (n = 138; 14 female [F]; 19.5 ± 1.6 years) completed up to four scanning sessions after SRC. Non-concussed contact (n = 135; 15 F; 19.7 ± 1.6) and non-contact athletes (n = 96; 15 F; 20.0 ± 1.7) completed similar scanning sessions and served as controls. Board-certified neuroradiologists, blinded to SRC status, reviewed T1-weighted and T2-weighted fluid-attenuated inversion recovery and T2*-weighted and T2-weighted images for acute (i.e., injury-related) or non-acute findings that prompted recommendation for clinical follow-up. Concussed athletes were more likely to have MRI findings relative to contact (30.4% vs. 15.6%; odds ratio [OR] = 2.32; p = 0.01) and non-contact control athletes (19.8%; OR = 2.11; p = 0.04). Female athletes were more likely to have MRI findings than males (43.2% vs. 19.4%; OR = 2.62; p = 0.01). One athlete with SRC had an acute, injury-related finding; group differences were largely driven by increased rate of non-specific white matter hyperintensities in concussed athletes. This prospective, large-scale study demonstrates that <1% of SRCs are associated with acute injury findings on qualitative structural MRI, providing empirical support for clinical guidelines that do not recommend use of MRI after SRC.Item Resting-State fMRI Metrics in Acute Sport-Related Concussion and Their Association with Clinical Recovery: A Study from the NCAA-DOD CARE Consortium(Mary Ann Liebert, Inc., 2020-01) Meier, Timothy B.; Giraldo-Chica, Monica; España, Lezlie Y.; Mayer, Andrew R.; Harezlak, Jaroslaw; Nencka, Andrew S.; Wang, Yang; Koch, Kevin M.; Wu, Yu-Chien; Saykin, Andrew J.; Giza, Christopher C.; Goldman, Joshua; DiFiori, John P.; Guskiewicz, Kevin M.; Mihalik, Jason P.; Brooks, Alison; Broglio, Steven P.; McAllister, Thomas; McCrea, Michael A.; Radiology and Imaging Sciences, School of MedicineThere has been a recent call for longitudinal cohort studies to track the physiological recovery of sport-related concussion (SRC) and its relationship with clinical recovery. Resting-state functional magnetic resonance imaging (rs-fMRI) has shown potential for detecting subtle changes in brain function after SRC. We investigated the effects of SRC on rs-fMRI metrics assessing local connectivity (regional homogeneity; REHO), global connectivity (average nodal strength), and the relative amplitude of slow oscillations of rs-fMRI (fractional amplitude of low-frequency fluctuations; fALFF). Athletes diagnosed with SRC (n = 92) completed visits with neuroimaging at 24-48 h post-injury (24 h), after clearance to begin the return-to-play (RTP) progression (asymptomatic), and 7 days following unrestricted RTP (post-RTP). Non-injured athletes (n = 82) completed visits yoked to the schedule of matched injured athletes and served as controls. Concussed athletes had elevated symptoms, worse neurocognitive performance, greater balance deficits, and elevated psychological symptoms at the 24-h visit relative to controls. These deficits were largely recovered by the asymptomatic visit. Concussed athletes still reported elevated psychological symptoms at the asymptomatic visit relative to controls. Concussed athletes also had elevated REHO in the right middle and superior frontal gyri at the 24-h visit that returned to normal levels by the asymptomatic visit. Additionally, REHO in these regions at 24 h predicted psychological symptoms at the asymptomatic visit in concussed athletes. Current results suggest that SRC is associated with an acute alteration in local connectivity that follows a similar time course as clinical recovery. Our results do not indicate strong evidence that concussion-related alterations in rs-fMRI persist beyond clinical recovery.