- Browse by Author
Browsing by Author "Cuthbertson, David"
Now showing 1 - 7 of 7
Results Per Page
Sort Options
Item Comparisons of Metabolic Measures to Predict T1D vs Detect a Preventive Treatment Effect in High-Risk Individuals(Oxford University Press, 2024) Sims, Emily K.; Cuthbertson, David; Jacobsen, Laura; Ismail, Heba M.; Nathan, Brandon M.; Herold, Kevan C.; Redondo, Maria J.; Sosenko, Jay; Pediatrics, School of MedicineContext: Metabolic measures are frequently used to predict type 1 diabetes (T1D) and to understand effects of disease-modifying therapies. Objective: Compare metabolic endpoints for their ability to detect preventive treatment effects and predict T1D. Methods: Six-month changes in metabolic endpoints were assessed for (1) detecting treatment effects by comparing placebo and treatment arms from the randomized controlled teplizumab prevention trial, a multicenter clinical trial investigating 14-day intravenous teplizumab infusion and (2) predicting T1D in the TrialNet Pathway to Prevention natural history study. For each metabolic measure, t-Values from t tests for detecting a treatment effect were compared with chi-square values from proportional hazards regression for predicting T1D. Participants in the teplizumab prevention trial and participants in the Pathway to Prevention study selected with the same inclusion criteria used for the teplizumab trial were studied. Results: Six-month changes in glucose-based endpoints predicted diabetes better than C-peptide-based endpoints, yet the latter were better at detecting a teplizumab effect. Combined measures of glucose and C-peptide were more balanced than measures of glucose alone or C-peptide alone for predicting diabetes and detecting a teplizumab effect. Conclusion: The capacity of a metabolic endpoint to detect a treatment effect does not necessarily correspond to its accuracy for predicting T1D. However, combined glucose and C-peptide endpoints appear to be effective for both predicting diabetes and detecting a response to immunotherapy. These findings suggest that combined glucose and C-peptide endpoints should be incorporated into the design of future T1D prevention trials.Item HOMA2-B enhances assessment of type 1 diabetes risk among TrialNet Pathway to Prevention participants(Springer, 2022) Felton, Jamie L.; Cuthbertson, David; Warnock, Megan; Lohano, Kuldeep; Meah, Farah; Wentworth, John M.; Sosenko, Jay; Evans-Molina, Carmella; Type 1 Diabetes TrialNet Study Group; Pediatrics, School of MedicineAims/hypothesis: Methods to identify individuals at highest risk for type 1 diabetes are essential for the successful implementation of disease-modifying interventions. Simple metabolic measures are needed to help stratify autoantibody-positive (Aab+) individuals who are at risk of developing type 1 diabetes. HOMA2-B is a validated mathematical tool commonly used to estimate beta cell function in type 2 diabetes using fasting glucose and insulin. The utility of HOMA2-B in association with type 1 diabetes progression has not been tested. Methods: Baseline HOMA2-B values from single-Aab+ (n = 2652; mean age, 21.1 ± 14.0 years) and multiple-Aab+ (n = 3794; mean age, 14.5 ± 11.2 years) individuals enrolled in the TrialNet Pathway to Prevention study were compared. Cox proportional hazard models were used to determine associations between HOMA2-B tertiles and time to progression to type 1 diabetes, with adjustments for age, sex, HLA status and BMI z score. Receiver operating characteristic (ROC) analysis was used to test the association of HOMA2-B with type 1 diabetes development in 1, 2, 5 and 10 years. Results: At study entry, HOMA2-B values were higher in single- compared with multiple-Aab+ Pathway to Prevention participants (91.1 ± 44.5 vs 83.9 ± 38.9; p < 0.001). Single- and multiple-Aab+ individuals in the lowest HOMA2-B tertile had a higher risk and faster rate of progression to type 1 diabetes. For progression to type 1 diabetes within 1 year, area under the ROC curve (AUC-ROC) was 0.685, 0.666 and 0.680 for all Aab+, single-Aab+ and multiple-Aab+ individuals, respectively. When correlation between HOMA2-B and type 1 diabetes risk was assessed in combination with additional factors known to influence type 1 diabetes progression (insulin sensitivity, age and HLA status), AUC-ROC was highest for the single-Aab+ group's risk of progression at 2 years (AUC-ROC 0.723 [95% CI 0.652, 0.794]). Conclusions/interpretation: These data suggest that HOMA2-B may have utility as a single-time-point measurement to stratify risk of type 1 diabetes development in Aab+ individuals.Item Persistence of b-Cell Responsiveness for Over Two Years in Autoantibody-Positive Children With Marked Metabolic Impairment at Screening(American Diabetes Association, 2022-12-01) Sims, Emily K.; Cuthbertson, David; Felton, Jamie L.; Ismail, Heba M.; Nathan, Brandon M.; Jacobsen, Laura M.; Paprocki, Emily; Pugliese, Alberto; Palmer, Jerry; Atkinson, Mark; Evans-Molina, Carmella; Skyler, Jay S.; Redondo, Maria J.; Herold, Kevan C.; Sosenko, Jay M.; Pediatrics, School of MedicineOBJECTIVE We studied longitudinal differences between progressors and nonprogressors to type 1 diabetes with similar and substantial baseline risk. RESEARCH DESIGN AND METHODS Changes in 2-h oral glucose tolerance test indices were used to examine variability in diabetes progression in the Diabetes Prevention Trial–Type 1 (DPT-1) study (n = 246) and Type 1 Diabetes TrialNet Pathway to Prevention study (TNPTP) (n = 503) among autoantibody (Ab)+ children (aged <18.0 years) with similar baseline metabolic impairment (DPT-1 Risk Score [DPTRS] of 6.5–7.5), as well as in TNPTP Ab− children (n = 94). RESULTS Longitudinal analyses revealed annualized area under the curve (AUC) of C-peptide increases in nonprogressors versus decreases in progressors (P ≤ 0.026 for DPT-1 and TNPTP). Vector indices for AUC glucose and AUC C-peptide changes (on a two-dimensional grid) also differed significantly (P < 0.001). Despite marked baseline metabolic impairment of nonprogressors, changes in AUC C-peptide, AUC glucose, AUC C-peptide–to–AUC glucose ratio (AUC ratio), and Index60 did not differ from Ab− relatives during follow-up. Divergence between nonprogressors and progressors occurred by 6 months from baseline in both cohorts (AUC glucose, P ≤ 0.007; AUC ratio, P ≤ 0.034; Index60, P < 0.001; vector indices of change, P < 0.001). Differences in 6-month change were positively associated with greater diabetes risk (respectively, P < 0.001, P ≤ 0.019, P < 0.001, and P < 0.001) in DPT-1 and TNPTP, except AUC ratio, which was inversely associated with risk (P < 0.001). CONCLUSIONS Novel findings show that even with similarly abnormal baseline risk, progressors had appreciably more metabolic impairment than nonprogressors within 6 months and that the measures showing impairment were predictive of type 1 diabetes. Longitudinal metabolic patterns did not differ between nonprogressors and Ab− relatives, suggesting persistent β-cell responsiveness in nonprogressors.Item TCF7L2 Genetic Variants Do Not Influence Insulin Sensitivity or Secretion Indices in Autoantibody-Positive Individuals at Risk for Type 1 Diabetes(American Diabetes Association, 2021) Redondo, Maria J.; Warnock, Megan V.; Libman, Ingrid M.; Bocchino, Laura E.; Cuthbertson, David; Geyer, Susan; Pugliese, Alberto; Steck, Andrea K.; Evans-Molina, Carmella; Becker, Dorothy; Sosenko, Jay M.; Bacha, Fida; Type 1 Diabetes TrialNet Study Group; Medicine, School of MedicineObjective: We aimed to test whether type 2 diabetes (T2D)-associated TCF7L2 genetic variants affect insulin sensitivity or secretion in autoantibody-positive relatives at risk for type 1 diabetes (T1D). Research design and methods: We studied autoantibody-positive TrialNet Pathway to Prevention study participants (N = 1,061) (mean age 16.3 years) with TCF7L2 single nucleotide polymorphism (SNP) information and baseline oral glucose tolerance test (OGTT) to calculate indices of insulin sensitivity and secretion. With Bonferroni correction for multiple comparisons, P values < 0.0086 were considered statistically significant. Results: None, one, and two T2D-linked TCF7L2 alleles were present in 48.1%, 43.9%, and 8.0% of the participants, respectively. Insulin sensitivity (as reflected by 1/fasting insulin [1/IF]) decreased with increasing BMI z score and was lower in Hispanics. Insulin secretion (as measured by 30-min C-peptide index) positively correlated with age and BMI z score. Oral disposition index was negatively correlated with age, BMI z score, and Hispanic ethnicity. None of the indices were associated with TCF7L2 SNPs. In multivariable analysis models with age, BMI z score, ethnicity, sex, and TCF7L2 alleles as independent variables, C-peptide index increased with age, while BMI z score was associated with higher insulin secretion (C-peptide index), lower insulin sensitivity (1/IF), and lower disposition index; there was no significant effect of TCF7L2 SNPs on any of these indices. When restricting the analyses to participants with a normal OGTT (n = 743; 70%), the results were similar. Conclusions: In nondiabetic autoantibody-positive individuals, TCF7L2 SNPs were not related to insulin sensitivity or secretion indices after accounting for BMI z score, age, sex, and ethnicity.Item The Deterrence of Rapid Metabolic Decline Within 3 Months After Teplizumab Treatment in Individuals at High Risk for Type 1 Diabetes(American Diabetes Association, 2021) Sims, Emily K.; Cuthbertson, David; Herold, Kevan C.; Sosenko, Jay M.; Pediatrics, School of MedicineEnd points that provide an early identification of treatment effects are needed to implement type 1 diabetes prevention trials more efficiently. To this end, we assessed whether metabolic end points can be used to detect a teplizumab effect on rapid β-cell decline within 3 months after treatment in high-risk individuals in the TrialNet teplizumab trial. Glucose and C-peptide response curves (GCRCs) were constructed by plotting mean glucose and C-peptide values from 2-h oral glucose tolerance tests on a two-dimensional grid. Groups were compared visually for changes in GCRC shape and movement. GCRC changes reflected marked metabolic deterioration in the placebo group within 3 months of randomization. By 6 months, GCRCs resembled typical GCRCs at diagnosis. In contrast, GCRC changes in the teplizumab group suggested metabolic improvement. Quantitative comparisons, including two novel metabolic end points that indicate GCRC changes, the within-quadrant end point and the ordinal directional end point, were consistent with visual impressions of an appreciable treatment effect at the 3- and 6-month time points. In conclusion, an analytic approach combining visual evidence with novel end points demonstrated that teplizumab delays rapid metabolic decline and improves the metabolic state within 3 months after treatment; this effect extends for at least 6 months.Item The Transition From a Compensatory Increase to a Decrease in C-peptide During the Progression to Type 1 Diabetes and Its Relation to Risk(American Diabetes Association, 2022-10) Ismail, Heba M.; Cuthbertson, David; Gitelman, Stephen E.; Skyler, Jay S.; Steck, Andrea K.; Rodriguez, Henry; Atkinson, Mark; Nathan, Brandon M.; Redondo, Maria J.; Herold, Kevan C.; Evans-Molina, Carmella; DiMeglio, Linda A.; Sosenko, Jay; DPT-1 and TrialNet Study Groups; Pediatrics, School of MedicineOBJECTIVE To define the relationship between glucose and C-peptide during the progression to type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS We longitudinally studied glucose and C-peptide response curves (GCRCs), area under curve (AUC) for glucose, and AUC C-peptide from oral glucose tolerance tests (OGTTs), and Index60 (which integrates OGTT glucose and C-peptide values) in Diabetes Prevention Trial–Type 1 (DPT-1) (n = 72) and TrialNet Pathway to Prevention Study (TNPTP) (n = 82) participants who had OGTTs at baseline and follow-up time points before diagnosis. RESULTS Similar evolutions of GCRC configurations were evident between DPT-1 and TNPTP from baseline to 0.5 years prediagnosis. Whereas AUC glucose increased throughout from baseline to 0.5 years prediagnosis, AUC C-peptide increased from baseline until 1.5 years prediagnosis (DPT-1, P = 0.004; TNPTP, P = 0.012) and then decreased from 1.5 to 0.5 years prediagnosis (DPT-1, P = 0.017; TNPTP, P = 0.093). This change was mostly attributable to change in the late AUC C-peptide response (i.e., 60- to 120-min AUC C-peptide). Median Index60 values of DPT-1 (1.44) and TNPTP (1.05) progressors to T1D 1.5 years prediagnosis (time of transition from increasing to decreasing AUC C-peptide) were used as thresholds to identify individuals at high risk for T1D in the full cohort at baseline (5-year risk of 0.75–0.88 for those above thresholds). CONCLUSIONS A transition from an increase to a decrease in AUC C-peptide ∼1.5 years prediagnosis was validated in two independent cohorts. The median Index60 value at that time point can be used as a pathophysiologic-based threshold for identifying individuals at high risk for T1D.Item The Transition From a Compensatory Increase to a Decrease in C-peptide During the Progression to Type 1 Diabetes and Its Relation to Risk(American Diabetes Association, 2022) Ismail, Heba M.; Cuthbertson, David; Gitelman, Stephen E.; Skyler, Jay S.; Steck, Andrea K.; Rodriguez, Henry; Atkinson, Mark; Nathan, Brandon M.; Redondo, Maria J.; Herold, Kevan C.; Evans-Molina, Carmella; DiMeglio, Linda A.; Sosenko, Jay; DPT-1 and TrialNet Study Groups; Pediatrics, School of MedicineObjective: To define the relationship between glucose and C-peptide during the progression to type 1 diabetes (T1D). Research design and methods: We longitudinally studied glucose and C-peptide response curves (GCRCs), area under curve (AUC) for glucose, and AUC C-peptide from oral glucose tolerance tests (OGTTs), and Index60 (which integrates OGTT glucose and C-peptide values) in Diabetes Prevention Trial-Type 1 (DPT-1) (n = 72) and TrialNet Pathway to Prevention Study (TNPTP) (n = 82) participants who had OGTTs at baseline and follow-up time points before diagnosis. Results: Similar evolutions of GCRC configurations were evident between DPT-1 and TNPTP from baseline to 0.5 years prediagnosis. Whereas AUC glucose increased throughout from baseline to 0.5 years prediagnosis, AUC C-peptide increased from baseline until 1.5 years prediagnosis (DPT-1, P = 0.004; TNPTP, P = 0.012) and then decreased from 1.5 to 0.5 years prediagnosis (DPT-1, P = 0.017; TNPTP, P = 0.093). This change was mostly attributable to change in the late AUC C-peptide response (i.e., 60- to 120-min AUC C-peptide). Median Index60 values of DPT-1 (1.44) and TNPTP (1.05) progressors to T1D 1.5 years prediagnosis (time of transition from increasing to decreasing AUC C-peptide) were used as thresholds to identify individuals at high risk for T1D in the full cohort at baseline (5-year risk of 0.75-0.88 for those above thresholds). Conclusions: A transition from an increase to a decrease in AUC C-peptide ∼1.5 years prediagnosis was validated in two independent cohorts. The median Index60 value at that time point can be used as a pathophysiologic-based threshold for identifying individuals at high risk for T1D.