- Browse by Author
Browsing by Author "Crompton, Peter D."
Now showing 1 - 10 of 15
Results Per Page
Sort Options
Item Accumulation of Neutrophil Phagocytic Antibody Features Tracks With Naturally Acquired Immunity Against Malaria in Children(Oxford University Press, 2023) Nziza, Nadege; Tran, Tuan M.; DeRiso, Elizabeth A.; Dolatshahi, Sepideh; Herman, Jonathan D.; de Lacerda, Luna; Junqueira, Caroline; Lieberman, Judy; Ongoiba, Aissata; Doumbo, Safiatou; Kayentao, Kassoum; Traore, Boubacar; Crompton, Peter D.; Alter, Galit; Medicine, School of MedicineBackground: Studies have demonstrated the protective role of antibodies against malaria. Young children are known to be particularly vulnerable to malaria, pointing to the evolution of naturally acquired clinical immunity over time. However, whether changes in antibody functionality track with the acquisition of naturally acquired malaria immunity remains incompletely understood. Methods: Using systems serology, we characterized sporozoite- and merozoite-specific antibody profiles of uninfected Malian children before the malaria season who differed in their ability to control parasitemia and fever following Plasmodium falciparum (Pf) infection. We then assessed the contributions of individual traits to overall clinical outcomes, focusing on the immunodominant sporozoite CSP and merozoite AMA1 and MSP1 antigens. Results: Humoral immunity evolved with age, with an expansion of both magnitude and functional quality, particularly within blood-stage phagocytic antibody activity. Moreover, concerning clinical outcomes postinfection, protected children had higher antibody-dependent neutrophil activity along with higher levels of MSP1-specific IgG3 and IgA and CSP-specific IgG3 and IgG4 prior to the malaria season. Conclusions: These data point to the natural evolution of functional humoral immunity to Pf with age and highlight particular antibody Fc-effector profiles associated with the control of malaria in children, providing clues for the design of next-generation vaccines or therapeutics.Item Adaptive NK cells in people exposed to Plasmodium falciparum correlate with protection from malaria(Rockefeller University Press, 2019-04-12) Hart, Geoffrey T.; Tran, Tuan M.; Theorell, Jakob; Schlums, Heinrich; Arora, Gunjan; Rajagopalan, Sumati; Sangala, A. D. Jules; Welsh, Kerry J.; Traore, Boubacar; Pierce, Susan K.; Crompton, Peter D.; Bryceson, Yenan T.; Long, Eric O.; Medicine, School of MedicineHow antibodies naturally acquired during Plasmodium falciparum infection provide clinical immunity to blood-stage malaria is unclear. We studied the function of natural killer (NK) cells in people living in a malaria-endemic region of Mali. Multi-parameter flow cytometry revealed a high proportion of adaptive NK cells, which are defined by the loss of transcription factor PLZF and Fc receptor γ-chain. Adaptive NK cells dominated antibody-dependent cellular cytotoxicity responses, and their frequency within total NK cells correlated with lower parasitemia and resistance to malaria. P. falciparum–infected RBCs induced NK cell degranulation after addition of plasma from malaria-resistant individuals. Malaria-susceptible subjects with the largest increase in PLZF-negative NK cells during the transmission season had improved odds of resistance during the subsequent season. Thus, antibody-dependent lysis of P. falciparum–infected RBCs by NK cells may be a mechanism of acquired immunity to malaria. Consideration of antibody-dependent NK cell responses to P. falciparum antigens is therefore warranted in the design of malaria vaccines.Item Creation of a non-Western humanized gnotobiotic mouse model through the transplantation of rural African fecal microbiota(American Society for Microbiology, 2023) Van Den Ham, Kristin M.; Little, Morgan R.; Bednarski, Olivia J.; Fusco, Elizabeth M.; Mandal, Rabindra K.; Mitra, Riten; Li, Shanping; Doumbo, Safiatou; Doumtabe, Didier; Kayentao, Kassoum; Ongoiba, Aissata; Traore, Boubacar; Crompton, Peter D.; Schmidt, Nathan W.; Pediatrics, School of MedicineThere is increasing evidence that microbes residing within the intestines (gut microbiota) play important roles in the well-being of humans. Yet, there are considerable challenges in determining the specific role of gut microbiota in human diseases owing to the complexity of diverse internal and environmental factors that can contribute to diseases. Mice devoid of all microorganisms (germ-free mice) can be colonized with human stool samples to examine the specific contribution of the gut microbiota to a disease. These approaches have been primarily focused on stool samples obtained from individuals in Western countries. Thus, there is limited understanding as to whether the same methods used to colonize germ-free mice with stool from Western individuals would apply to the colonization of germ-free mice with stool from non-Western individuals. Here, we report the results from colonizing germ-free mice with stool samples of Malian children.Item Decoding the complexities of human malaria through systems immunology(Wiley, 2020-01) Tran, Tuan M.; Crompton, Peter D.; Medicine, School of MedicineThe complexity of the Plasmodium parasite and its life cycle poses a challenge to our understanding of the host immune response against malaria. Studying human immune responses during natural and experimental Plasmodium infections can enhance our understanding of malaria-protective immunity and inform the design of disease-modifying adjunctive therapies and next-generation malaria vaccines. Systems immunology can complement conventional approaches to facilitate our understanding of the complex immune response to the highly dynamic malaria parasite. In this review, recent studies that used systems-based approaches to evaluate human immune responses during natural and experimental Plasmodium falciparum and Plasmodium vivax infections as well as during immunization with candidate malaria vaccines are summarized and related to each other. The potential for next-generation technologies to address the current limitations of systems-based studies of human malaria are discussed.Item Extent and Dynamics of Polymorphism in the Malaria Vaccine Candidate Plasmodium falciparum Reticulocyte-Binding Protein Homologue-5 in Kalifabougou, Mali(The American Society of Tropical Medicine and Hygiene, 2018-07) Ouattara, Amed; Tran, Tuan M.; Doumbo, Safiatou; Matthew, Adams; Agrawal, Sonia; Niangaly, Amadou; Nelson-Owens, Sara; Doumtabé, Didier; Tolo, Youssouf; Ongoiba, Aissata; Takala-Harrison, Shannon; Traoré, Boubacar; Silva, Joana C.; Crompton, Peter D.; Doumbo, Ogobara K.; Plowe, Christopher V.; Medicine, School of MedicineReticulocyte-binding homologues (RH) are a ligand family that mediates merozoite invasion of erythrocytes in Plasmodium falciparum. Among the five members of this family identified so far, only P. falciparum reticulocyte-binding homologue-5 (PfRH5) has been found to be essential for parasite survival across strains that differ in virulence and route of host-cell invasion. Based on its essential role in invasion and early evidence of sequence conservation, PfRH5 has been prioritized for development as a vaccine candidate. However, little is known about the extent of genetic variability of RH5 in the field and the potential impact of such diversity on clinical outcomes or on vaccine evasion. Samples collected during a prospective cohort study of malaria incidence conducted in Kalifabougou, in southwestern Mali, were used to estimate genetic diversity, measure haplotype prevalence, and assess the within-host dynamics of PfRH5 variants over time and in relation to clinical malaria. A total of 10 nonsynonymous polymorphic sites were identified in the Pfrh5 gene, resulting in 13 haplotypes encoding unique protein variants. Four of these variants have not been previously observed. Plasmodium falciparum reticulocyte-binding homologue-5 had low amino acid haplotype (h = 0.58) and nucleotide (π = 0.00061) diversity. By contrast to other leading blood-stage malaria vaccine candidate antigens, amino acid differences were not associated with changes in the risk of febrile malaria in consecutive infections. Conserved B- and T-cell epitopes were identified. These results support the prioritization of PfRH5 for possible inclusion in a broadly cross-protective vaccine.Item Increased circulation time of Plasmodium falciparum underlies persistent asymptomatic infection in the dry season(Nature, 2020-12) Andrade, Carolina M.; Fleckenstein, Hannah; Thomson-Luque, Richard; Doumbo, Safiatou; Lima, Nathalia F.; Anderson, Carrie; Hibbert, Julia; Hopp, Christine S.; Tran, Tuan M.; Li, Shanping; Niangaly, Moussa; Cisse, Hamidou; Doumtabe, Didier; Skinner, Jeff; Sturdevant, Dan; Ricklefs, Stacy; Virtaneva, Kimmo; Asghar, Muhammad; Vafa Homann, Manijeh; Turner, Louise; Martins, Joana; Allman, Erik L.; N'Dri, Marie-Esther; Winkler, Volker; Llinás, Manuel; Lavazec, Catherine; Martens, Craig; Farnert, Anna; Kayentao, Kassoum; Ongoiba, Aissata; Lavstsen, Thomas; Osório, Nuno S.; Otto, Thomas D.; Recker, Mario; Traore, Boubacar; Crompton, Peter D.; Portugal, Silvia; Medicine, School of MedicineThe dry season is a major challenge for Plasmodium falciparum parasites in many malaria endemic regions, where water availability limits mosquito vectors to only part of the year. How P. falciparum bridges two transmission seasons months apart, without being cleared by the human host or compromising host survival, is poorly understood. Here we show that low levels of P. falciparum parasites persist in the blood of asymptomatic Malian individuals during the 5- to 6-month dry season, rarely causing symptoms and minimally affecting the host immune response. Parasites isolated during the dry season are transcriptionally distinct from those of individuals with febrile malaria in the transmission season, coinciding with longer circulation within each replicative cycle of parasitized erythrocytes without adhering to the vascular endothelium. Low parasite levels during the dry season are not due to impaired replication but rather to increased splenic clearance of longer-circulating infected erythrocytes, which likely maintain parasitemias below clinical and immunological radar. We propose that P. falciparum virulence in areas of seasonal malaria transmission is regulated so that the parasite decreases its endothelial binding capacity, allowing increased splenic clearance and enabling several months of subclinical parasite persistence.Item Longitudinal analysis of naturally acquired PfEMP1 CIDR domain variant antibodies identifies associations with malaria protection(American Society for Clinical Investigation, 2020-05-19) Obeng-Adjei, Nyamekye; Larremore, Daniel B.; Turner, Louise; Ongoiba, Aissata; Li, Shanping; Doumbo, Safiatou; Yazew, Takele B.; Kayentao, Kassoum; Miller, Louis H.; Traore, Boubacar; Pierce, Susan K.; Buckee, Caroline O.; Lavstsen, Thomas; Crompton, Peter D.; Tran, Tuan M.; Medicine, School of MedicineBACKGROUND Malaria pathogenicity is determined, in part, by the adherence of Plasmodium falciparum–infected erythrocytes to the microvasculature mediated via specific interactions between P. falciparum erythrocyte membrane protein (PfEMP1) variant domains and host endothelial receptors. Naturally acquired antibodies against specific PfEMP1 variants can play an important role in clinical protection against malaria. METHODS We evaluated IgG responses against a repertoire of PfEMP1 CIDR domain variants to determine the rate and order of variant-specific antibody acquisition and their association with protection against febrile malaria in a prospective cohort study conducted in an area of intense, seasonal malaria transmission. RESULTS Using longitudinal data, we found that IgG antibodies against the pathogenic domain variants CIDRα1.7 and CIDRα1.8 were acquired the earliest. Furthermore, IgG antibodies against CIDRγ3 were associated with reduced prospective risk of febrile malaria and recurrent malaria episodes. CONCLUSION This study provides evidence that acquisition of IgG antibodies against PfEMP1 variants is ordered and demonstrates that antibodies against CIDRα1 domains are acquired the earliest in children residing in an area of intense, seasonal malaria transmission. Future studies will need to validate these findings in other transmission settings and determine the functional activity of these naturally acquired CIDR variant–specific antibodies. TRIAL REGISTRATION ClinicalTrials.gov NCT01322581.Item A Molecular Signature in Blood Reveals a Role for p53 in Regulating Malaria-Induced Inflammation(Elsevier, 2019-10-15) Tran, Tuan M.; Guha, Rajan; Portugal, Silvia; Skinner, Jeff; Ongoiba, Aissata; Bhardwaj, Jyoti; Jones, Marcus; Moebius, Jacqueline; Venepally, Pratap; Doumbo, Safiatou; DeRiso, Elizabeth A.; Li, Shanping; Vijayan, Kamalakannan; Anzick, Sarah L.; Hart, Geoffrey T.; O’Connell, Elise M.; Doumbo, Ogobara K.; Kaushansky, Alexis; Alter, Galit; Felgner, Phillip L.; Lorenzi, Hernan; Kayentao, Kassoum; Traore, Boubacar; Kirkness, Ewen F.; Crompton, Peter D.; Medicine, School of MedicineImmunity that controls parasitemia and inflammation during Plasmodium falciparum (Pf) malaria can be acquired with repeated infections. A limited understanding of this complex immune response impedes the development of vaccines and adjunctive therapies. We conducted a prospective systems biology study of children who differed in their ability to control parasitemia and fever following Pf infection. By integrating whole-blood transcriptomics, flow-cytometric analysis, and plasma cytokine and antibody profiles, we demonstrate that a pre-infection signature of B cell enrichment; upregulation of T-helper type 1 (Th1) and Th2 cell-associated pathways, including interferon responses; and p53 activation associated with control of malarial fever and coordinated with Pf-specific IgG and Fc receptor activation to control parasitemia. Our hypothesis-generating approach identified host molecules that may contribute to differential clinical outcomes during Pf infection. As a proof of concept, we have shown that enhanced p53 expression in monocytes attenuated Plasmodium-induced inflammation and predicted protection from fever.Item Neither the African-Centric S47 Nor P72 Variant of TP53 Is Associated With Reduced Risk of Febrile Malaria in a Malian Cohort Study(Oxford University Press, 2023) Bhardwaj, Jyoti; Upadhye, Aditi; Gaskin, Erik L.; Doumbo, Safiatou; Kayentao, Kassoum; Ongoiba, Aissata; Traore, Boubacar; Crompton, Peter D.; Tran, Tuan M.; Medicine, School of MedicineBackground: TP53 has been shown to play a role in inflammatory processes, including malaria. We previously found that p53 attenuates parasite-induced inflammation and predicts clinical protection to Plasmodium falciparum infection in Malian children. Here, we investigated whether p53 codon 47 and 72 polymorphisms are associated with differential risk of P. falciparum infection and uncomplicated malaria in a prospective cohort study of malaria immunity. Methods: p53 codon 47 and 72 polymorphisms were determined by sequencing TP53 exon 4 in 631 Malian children and adults enrolled in the Kalifabougou cohort study. The effects of these polymorphisms on the prospective risk of febrile malaria, incident parasitemia, and time to fever after incident parasitemia over 6 months of intense malaria transmission were assessed using Cox proportional hazards models. Results: Confounders of malaria risk, including age and hemoglobin S or C, were similar between individuals with or without p53 S47 and R72 polymorphisms. Relative to their respective common variants, neither S47 nor R72 was associated with differences in prospective risk of febrile malaria, incident parasitemia, or febrile malaria after parasitemia. Conclusions: These findings indicate that p53 codon 47 and 72 polymorphisms are not associated with protection against incident P. falciparum parasitemia or uncomplicated febrile malaria.Item Protein-Specific Features Associated with Variability in Human Antibody Responses to Plasmodium falciparum Malaria Antigens(American Society of Tropical Medicine and Hygiene, 2018-01) Liu, Eugene W.; Skinner, Jeff; Tran, Tuan M.; Kumar, Krishan; Narum, David L.; Jain, Aarti; Ongoiba, Aissata ba; Traoré, Boubacar; Felgner, Philip L.; Crompton, Peter D.; Medicine, School of MedicineThe magnitude of antibody responses varies across the individual proteins that constitute any given microorganism, both in the context of natural infection and vaccination with attenuated or inactivated pathogens. The protein-specific factors underlying this variability are poorly understood. In 267 individuals exposed to intense seasonal malaria, we examined the relationship between immunoglobulin G (IgG) responses to 861 Plasmodium falciparum proteins and specific features of these proteins, including their subcellular location, relative abundance, degree of polymorphism, and whether they are predicted to have human orthologs. We found that IgG reactivity was significantly higher to extracellular and plasma membrane proteins and also correlated positively with both protein abundance and degree of protein polymorphism. Conversely, IgG reactivity was significantly lower to proteins predicted to have human orthologs. These findings provide insight into protein-specific factors that are associated with variability in the magnitude of antibody responses to natural P. falciparum infection-data that could inform vaccine strategies to optimize antibody-mediated immunity as well as the selection of antigens for sero-diagnostic purposes.