- Browse by Author
Browsing by Author "Creecy, Amy"
Now showing 1 - 10 of 14
Results Per Page
Sort Options
Item Bone Fragility in High Fat Diet-induced Obesity is Partially Independent of Type 2 Diabetes in Mice(Springer, 2024) Uppuganti, Sasidhar; Creecy, Amy; Fernandes, Daniel; Garrett, Kate; Donovan, Kara; Ahmed, Rafay; Voziyan, Paul; Rendina‑Ruedy, Elizabeth; Nyman, Jeffry S.; Orthopaedic Surgery, School of MedicineObesity and type 2 diabetes (T2D) are risk factors for fragility fractures. It is unknown whether this elevated risk is due to a diet favoring obesity or the diabetes that often occurs with obesity. Therefore, we hypothesized that the fracture resistance of bone is lower in mice fed with a high fat diet (45% kcal; HFD) than in mice that fed on a similar, control diet (10% kcal; LFD), regardless of whether the mice developed overt T2D. Sixteen-week-old, male NON/ShiLtJ mice (resistant to T2D) and age-matched, male NONcNZO10/LtJ (prone to T2D) received a control LFD or HFD for 21 weeks. HFD increased the bodyweight to a greater extent in the ShiLtJ mice compared to the NZO10 mice, while blood glucose levels were significantly higher in NZO10 than in ShiLtJ mice. As such, the glycated hemoglobin A1c (HbA1c) levels exceeded 10% in NZO10 mice, but it remained below 6% in ShiLtJ mice. Diet did not affect HbA1c. HFD lowered trabecular number and bone volume fraction of the distal femur metaphysis (micro-computed tomography or μCT) in both strains. For the femur mid-diaphysis, HFD significantly reduced the yield moment (mechanical testing by three-point bending) in both strains but did not affect cross-sectional bone area, cortical thickness, nor cortical tissue mineral density (μCT). Furthermore, the effect of diet on yield moment was independent of the structural resistance of the femur mid-diaphysis suggesting a negative effect of HFD on characteristics of the bone matrix. However, neither Raman spectroscopy nor assays of advanced glycation end-products identified how HFD affected the matrix. HFD also lowered the resistance of cortical bone to crack growth in only the diabetic NZO10 mice (fracture toughness testing of other femur), while HFD reduced the ultimate force of the L6 vertebra in both strains (compression testing). In conclusion, the HFD-related decrease in bone strength can occur in mice resistant and prone to diabetes indicating that a diet high in fat deleteriously affects bone without necessarily causing hyperglycemia.Item Combined Thermoneutral Housing and Raloxifene Treatment Improves Trabecular Bone Microarchitecture and Strength in Growing Female Mice(Springer, 2023) Jacobson, Andrea; Tastad, Carli A.; Creecy, Amy; Wallace, Joseph M.; Orthopaedic Surgery, School of MedicineThermoneutral housing and Raloxifene (RAL) treatment both have potential for improving mechanical and architectural properties of bone. Housing mice within a 30 to 32 °C range improves bone quality by reducing the consequences of cold stress, such as shivering and metabolic energy consumption (Chevalier et al. in Cell Metab 32(4):575-590.e7, 2020; Martin et al. in Endocr Connect 8(11):1455-1467, 2019; Hankenson et al. in Comp Med 68(6):425-438, 2018). Previous work suggests that Raloxifene can enhance bone strength and geometry (Ettinger et al. in Jama 282(7):637-645, 1999; Powell et al. in Bone Rep 12:100246, 2020). An earlier study in our lab utilized long bones to examine the effect of thermoneutral housing and Raloxifene treatment in mice, but no significant interactive effects were found. The lack of an impact is hypothesized to be connected to the short 6-week duration of the study and the type of bone analyzed. This study will examine the same question within the axial skeleton, which has a higher proportion of trabecular bone. After 6 weeks of treatment with RAL, vertebrae from female C57BL/6 J mice underwent microcomputed tomography (μCT), architectural analysis, and compression testing. Most of the tested geometric properties (bone volume/tissue volume percent, trabecular thickness, trabecular number, trabecular spacing) improved with both the housing and RAL treatment. The effect sizes suggested an additive effect when treating mice housed under thermoneutral conditions. While ultimate force was enhanced with the treatment and housing, force normalized by bone volume fraction was not significantly different between groups. For longer pre-clinical trials, it may be important to consider the impacts of temperature on mice to improve the accuracy of these models.Item Control of Bone Matrix Properties by Osteocytes(Frontiers Media, 2021-01-18) Creecy, Amy; Damrath, John G.; Wallace, Joseph M.; Biomedical Engineering, School of Engineering and TechnologyOsteocytes make up 90–95% of the cellular content of bone and form a rich dendritic network with a vastly greater surface area than either osteoblasts or osteoclasts. Osteocytes are well positioned to play a role in bone homeostasis by interacting directly with the matrix; however, the ability for these cells to modify bone matrix remains incompletely understood. With techniques for examining the nano- and microstructure of bone matrix components including hydroxyapatite and type I collagen becoming more widespread, there is great potential to uncover novel roles for the osteocyte in maintaining bone quality. In this review, we begin with an overview of osteocyte biology and the lacunar–canalicular system. Next, we describe recent findings from in vitro models of osteocytes, focusing on the transitions in cellular phenotype as they mature. Finally, we describe historical and current research on matrix alteration by osteocytes in vivo, focusing on the exciting potential for osteocytes to directly form, degrade, and modify the mineral and collagen in their surrounding matrix.Item Correlation analysis of cartilage wear with biochemical composition, viscoelastic properties and friction(Elsevier, 2023) Joukar, Amin; Creecy, Amy; Karnik, Sonali; Noori-Dokht, Hessam; Trippel, Stephen B.; Wallace, Joseph M.; Wagner, Diane R.; Orthopaedic Surgery, School of MedicineHealthy articular cartilage exhibits remarkable resistance to wear, sustaining mechanical loads and relative motion for decades. However, tissues that replace or repair cartilage defects are much less long lasting. Better information on the compositional and material characteristics that contribute to the wear resistance of healthy cartilage could help guide strategies to replace and repair degenerated tissue. The main objective of this study was to assess the relationship between wear of healthy articular cartilage, its biochemical composition, and its viscoelastic material properties. The correlation of these factors with the coefficient of friction during the wear test was also evaluated. Viscoelastic properties of healthy bovine cartilage were determined via stress relaxation indentation. The same specimens underwent an accelerated, in vitro wear test, and the amount of glycosaminoglycans (GAGs) and collagen released during the wear test were considered measures of wear. The frictional response during the wear test was also recorded. The GAG, collagen and water content and the concentration of the enzymatic collagen crosslink pyridinoline were quantified in tissue that was adjacent to each wear test specimen. Finally, correlation analysis was performed to identify potential relationships between wear characteristics of healthy articular cartilage with its composition, viscoelastic material properties and friction. The findings suggest that stiffer cartilage with higher GAG, collagen and water content has a higher wear resistance. Enzymatic collagen crosslinks also enhance the wear resistance of the collagen network. The parameters of wear, composition, and mechanical stiffness of cartilage were all correlated with one another, suggesting that they are interrelated. However, friction was largely independent of these in this study. The results identify characteristics of healthy articular cartilage that contribute to its remarkable wear resistance. These data may be useful for guiding techniques to restore, regenerate, and stabilize cartilage tissue.Item COVID-19 and Bone Loss: A Review of Risk Factors, Mechanisms, and Future Directions(Springer, 2024) Creecy, Amy; Awosanya, Olatundun D.; Harris, Alexander; Qiao, Xian; Ozanne, Marie; Toepp, Angela J.; Kacena, Melissa A.; McCune, Thomas; Orthopaedic Surgery, School of MedicinePurpose of review: SARS-CoV-2 drove the catastrophic global phenomenon of the COVID-19 pandemic resulting in a multitude of systemic health issues, including bone loss. The purpose of this review is to summarize recent findings related to bone loss and potential mechanisms. Recent findings: The early clinical evidence indicates an increase in vertebral fractures, hypocalcemia, vitamin D deficiencies, and a loss in BMD among COVID-19 patients. Additionally, lower BMD is associated with more severe SARS-CoV-2 infection. Preclinical models have shown bone loss and increased osteoclastogenesis. The bone loss associated with SARS-CoV-2 infection could be the result of many factors that directly affect the bone such as higher inflammation, activation of the NLRP3 inflammasome, recruitment of Th17 cells, the hypoxic environment, and changes in RANKL/OPG signaling. Additionally, SARS-CoV-2 infection can exert indirect effects on the skeleton, as mechanical unloading may occur with severe disease (e.g., bed rest) or with BMI loss and muscle wasting that has also been shown to occur with SARS-CoV-2 infection. Muscle wasting can also cause systemic issues that may influence the bone. Medications used to treat SARS-CoV-2 infection also have a negative effect on the bone. Lastly, SARS-CoV-2 infection may also worsen conditions such as diabetes and negatively affect kidney function, all of which could contribute to bone loss and increased fracture risk. SARS-CoV-2 can negatively affect the bone through multiple direct and indirect mechanisms. Future work will be needed to determine what patient populations are at risk of COVID-19-related increases in fracture risk, the mechanisms behind bone loss, and therapeutic options. This review article is part of a series of multiple manuscripts designed to determine the utility of using artificial intelligence for writing scientific reviews.Item Dietary supplements do not improve bone morphology or mechanical properties in young female C57BL/6 mice(Springer Nature, 2022-06-13) Creecy, Amy; Smith, Collier; Wallace, Joseph M.; Biomedical Engineering, School of Engineering and TechnologyBone is a hierarchical material formed by an organic extracellular matrix and mineral where each component and their physical relationship with each other contribute to fracture resistance. Bone quality can be affected by nutrition, and dietary supplements that are marketed to improve overall health may improve the fracture resistance of bone. To test this, 11 week old female C57BL/6 mice were fed either collagen, chondroitin sulfate, glucosamine sulfate, or fish oil 5 times a week for 8 weeks. Femurs, tibiae, and vertebrae were scanned with micro-computed tomography and then mechanically tested. Glucosamine and fish oil lowered elastic modulus, but did not alter the overall strength of the femur. There were no differences in bone mechanics of the tibiae or vertebrae. Overall, the data suggest that dietary supplements did little to improve bone quality in young, healthy mice. These supplements may be more effective in diseased or aged mice.Item Effect of Advanced Glycation End‐Products (AGE) Lowering Drug ALT‐711 on Biochemical, Vascular, and Bone Parameters in a Rat Model of CKD‐MBD(Wiley, 2019) Chen, Neal X.; Srinivasan, Shruthi; O'Neill, Kalisha; Nickolas, Thomas L.; Wallace, Joseph M.; Allen, Matthew R.; Metzger, Corinne E.; Creecy, Amy; Avin, Keith G.; Moe, Sharon M.; Medicine, School of MedicineChronic kidney disease–mineral bone disorder (CKD‐MBD) is a systemic disorder that affects blood measures of bone and mineral homeostasis, vascular calcification, and bone. We hypothesized that the accumulation of advanced glycation end‐products (AGEs) in CKD may be responsible for the vascular and bone pathologies via alteration of collagen. We treated a naturally occurring model of CKD‐MBD, the Cy/+ rat, with a normal and high dose of the AGE crosslink breaker alagebrium (ALT‐711), or with calcium in the drinking water to mimic calcium phosphate binders for 10 weeks. These animals were compared to normal (NL) untreated animals. The results showed that CKD animals, compared to normal animals, had elevated blood urea nitrogen (BUN), PTH, FGF23 and phosphorus. Treatment with ALT‐711 had no effect on kidney function or PTH, but 3 mg/kg lowered FGF23 whereas calcium lowered PTH. Vascular calcification of the aorta assessed biochemically was increased in CKD animals compared to NL, and decreased by the normal, but not high dose of ALT‐711, with parallel decreases in left ventricular hypertrophy. ALT‐711 (3 mg/kg) did not alter aorta AGE content, but reduced aorta expression of receptor for advanced glycation end products (RAGE) and NADPH oxidase 2 (NOX2), suggesting effects related to decreased oxidative stress at the cellular level. The elevated total bone AGE was decreased by 3 mg/kg ALT‐711 and both bone AGE and cortical porosity were decreased by calcium treatment, but only calcium improved bone properties. In summary, treatment of CKD‐MBD with an AGE breaker ALT‐711, decreased FGF23, reduced aorta calcification, and reduced total bone AGE without improvement of bone mechanics. These results suggest little effect of ALT‐711 on collagen, but potential cellular effects. The data also highlights the need to better measure specific types of AGE proteins at the tissue level in order to fully elucidate the impact of AGEs on CKD‐MBD. © 2019 American Society for Bone and Mineral Research.Item Fragile X Messenger Ribonucleoprotein 1 (FMR1), a novel inhibitor of osteoblast/osteocyte differentiation, regulates bone formation, mass, and strength in young and aged male and female mice(Springer Nature, 2023-05-17) Deosthale, Padmini; Balanta-Melo, Julián; Creecy, Amy; Liu, Chongshan; Marcial, Alejandro; Morales, Laura; Cridlin, Julita; Robertson, Sylvia; Okpara, Chiebuka; Sanchez, David J.; Ayoubi, Mahdi; Lugo, Joaquín N.; Hernandez, Christopher J.; Wallace, Joseph M.; Plotkin, Lilian I.; Anatomy, Cell Biology and Physiology, School of MedicineFragile X Messenger Ribonucleoprotein 1 (FMR1) gene mutations lead to fragile X syndrome, cognitive disorders, and, in some individuals, scoliosis and craniofacial abnormalities. Four-month-old (mo) male mice with deletion of the FMR1 gene exhibit a mild increase in cortical and cancellous femoral bone mass. However, consequences of absence of FMR1 in bone of young/aged male/female mice and the cellular basis of the skeletal phenotype remain unknown. We found that absence of FMR1 results in improved bone properties with higher bone mineral density in both sexes and in 2- and 9-mo mice. The cancellous bone mass is higher only in females, whereas, cortical bone mass is higher in 2- and 9-mo males, but higher in 2- and lower in 9-mo female FMR1-knockout mice. Furthermore, male bones show higher biomechanical properties at 2mo, and females at both ages. Absence of FMR1 increases osteoblast/mineralization/bone formation and osteocyte dendricity/gene expression in vivo/ex vivo/in vitro, without affecting osteoclasts in vivo/ex vivo. Thus, FMR1 is a novel osteoblast/osteocyte differentiation inhibitor, and its absence leads to age-, site- and sex-dependent higher bone mass/strength.Item Morphological and mechanical characterization of bone phenotypes in the Amish G610C murine model of osteogenesis imperfecta(PLOS, 2021-08-27) Kohler, Rachel; Tastad, Carli A.; Creecy, Amy; Wallace, Joseph M.; Biomedical Engineering, School of Engineering and TechnologyOsteogenesis imperfecta (OI) is a hereditary bone disease where gene mutations affect Type I collagen formation resulting in osteopenia and increased fracture risk. There are several established mouse models of OI, but some are severe and result in spontaneous fractures or early animal death. The Amish Col1a2G610C/+ (G610C) mouse model is a newer, moderate OI model that is currently being used in a variety of intervention studies, with differing background strains, sexes, ages, and bone endpoints. This study is a comprehensive mechanical and architectural characterization of bone in G610C mice bred on a C57BL/6 inbred strain and will provide a baseline for future treatment studies. Male and female wild-type (WT) and G610C mice were euthanized at 10 and 16 weeks (n = 13-16). Harvested tibiae, femora, and L4 vertebrae were scanned via micro-computed tomography and analyzed for cortical and trabecular architectural properties. Femora and tibiae were then mechanically tested to failure. G610C mice had less bone but more highly mineralized cortical and trabecular tissue than their sex- and age-matched WT counterparts, with cortical cross-sectional area, thickness, and mineral density, and trabecular bone volume, mineral density, spacing, and number all differing significantly as a function of genotype (2 Way ANOVA with main effects of sex and genotype at each age). In addition, mechanical yield force, ultimate force, displacement, strain, and toughness were all significantly lower in G610C vs. WT, highlighting a brittle phenotype. This characterization demonstrates that despite being a moderate OI model, the Amish G610C mouse model maintains a distinctly brittle phenotype and is well-suited for use in future intervention studies.Item Nmp4, a Regulator of Induced Osteoanabolism, Also Influences Insulin Secretion and Sensitivity(Springer, 2022) Bidwell, Joseph; Tersey, Sarah A.; Adaway, Michele; Bone, Robert N.; Creecy, Amy; Klunk, Angela; Atkinson, Emily G.; Wek, Ronald C.; Robling, Alexander G.; Wallace, Joseph M.; Evans-Molina, Carmella; Anatomy, Cell Biology and Physiology, School of MedicineA bidirectional and complex relationship exists between bone and glycemia. Persons with type 2 diabetes (T2D) are at risk for bone loss and fracture, however, heightened osteoanabolism may ameliorate T2D-induced deficits in glycemia as bone-forming osteoblasts contribute to energy metabolism via increased glucose uptake and cellular glycolysis. Mice globally lacking Nuclear Matrix Protein 4 (Nmp4), a transcription factor expressed in all tissues and conserved between humans and rodents, are healthy and exhibit enhanced bone formation in response to anabolic osteoporosis therapies. To test whether loss of Nmp4 similarly impacted bone deficits caused by diet induced obesity, male wild type (WT) and Nmp4−/− mice (8wks) were fed either low-fat diet (LFD) or high-fat diet (HFD) for 12wks. Endpoint parameters included bone architecture, structural and estimated tissue level mechanical properties, body weight/composition, glucose-stimulated insulin secretion, glucose tolerance, insulin tolerance and metabolic cage analysis. HFD diminished bone architecture and ultimate force and stiffness equally in both genotypes. Unexpectedly, the Nmp4−/− mice exhibited deficits in pancreatic β-cell function and were modestly glucose intolerant under normal diet conditions. Despite the β-cell deficits, the Nmp4−/− mice were less sensitive to HFD-induced weight gain, increases in % fat mass, and decreases in glucose tolerance and insulin sensitivity. We conclude that Nmp4 supports pancreatic β-cell function but suppresses peripheral glucose utilization, perhaps contributing to its suppression of induced skeletal anabolism. Selective disruption of Nmp4 in peripheral tissues may provide a strategy for improving both induced osteoanabolism and energy metabolism in comorbid patients.