- Browse by Author
Browsing by Author "Crean, Colin D."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item FGF23 is elevated in multiple myeloma and increases heparanase expression by tumor cells(Oncotarget, 2015-08-14) Suvannasankha, Attaya; Tompkins, Douglas R.; Edwards, Daniel F.; Petyaykina, Katarina V.; Crean, Colin D.; Fournier, Pierrick G.; Parker, Jamie M.; Sandusky, George E.; Ichikawa, Shoji; Imel, Erik A.; Chirgwin, John M.; Department of Medicine, IU School of MedicineMultiply myeloma (MM) grows in and destroys bone, where osteocytes secrete FGF23, a hormone which affects phosphate homeostasis and aging. We report that multiple myeloma (MM) cells express receptors for and respond to FGF23. FGF23 increased mRNA for EGR1 and its target heparanase, a pro-osteolytic factor in MM. FGF23 signals through a complex of klotho and a classical FGF receptor (FGFR); both were expressed by MM cell lines and patient samples. Bone marrow plasma cells from 42 MM patients stained positively for klotho, while plasma cells from 8 patients with monoclonal gammopathy of undetermined significance (MGUS) and 6 controls were negative. Intact, active FGF23 was increased 2.9X in sera of MM patients compared to controls. FGF23 was not expressed by human MM cells, but co-culture with mouse bone increased its mRNA. The FGFR inhibitor NVP-BGJ398 blocked the heparanase response to FGF23. NVP-BGJ398 did not inhibit 8226 growth in vitro but significantly suppressed growth in bone and induction of the osteoclast regulator RANK ligand, while decreasing heparanase mRNA. The bone microenvironment provides resistance to some anti-tumor drugs but increased the activity of NVP-BGJ398 against 8226 cells. The FGF23/klotho/heparanase signaling axis may offer targets for treatment of MM in bone.Item Growth factor independence 1 expression in myeloma cells enhances their growth, survival, and osteoclastogenesis(Biomed Central, 2018-10-04) Petrusca, Daniela N.; Toscani, Denise; Wang, Feng-Ming; Park, Cheolkyu; Crean, Colin D.; Anderson, Judith L.; Marino, Silvia; Mohammad, Khalid S.; Zhou, Dan; Silbermann, Rebecca; Sun, Quanhong; Kurihara, Noriyoshi; Galson, Deborah L.; Giuliani, Nicola; Roodman, G. David; Medicine, School of MedicineBACKGROUND: In spite of major advances in treatment, multiple myeloma (MM) is currently an incurable malignancy due to the emergence of drug-resistant clones. We previously showed that MM cells upregulate the transcriptional repressor, growth factor independence 1 (Gfi1), in bone marrow stromal cells (BMSCs) that induces prolonged inhibition of osteoblast differentiation. However, the role of Gfi1 in MM cells is unknown. METHODS: Human primary CD138+ and BMSC were purified from normal donors and MM patients' bone marrow aspirates. Gfi1 knockdown and overexpressing cells were generated by lentiviral-mediated shRNA. Proliferation/apoptosis studies were done by flow cytometry, and protein levels were determined by Western blot and/or immunohistochemistry. An experimental MM mouse model was generated to investigate the effects of MM cells overexpressing Gfi1 on tumor burden and osteolysis in vivo. RESULTS: We found that Gfi1 expression is increased in patient's MM cells and MM cell lines and was further increased by co-culture with BMSC, IL-6, and sphingosine-1-phosphate. Modulation of Gfi1 in MM cells had major effects on their survival and growth. Knockdown of Gfi1 induced apoptosis in p53-wt, p53-mutant, and p53-deficient MM cells, while Gfi1 overexpression enhanced MM cell growth and protected MM cells from bortezomib-induced cell death. Gfi1 enhanced cell survival of p53-wt MM cells by binding to p53, thereby blocking binding to the promoters of the pro-apoptotic BAX and NOXA genes. Further, Gfi1-p53 binding could be blocked by HDAC inhibitors. Importantly, inoculation of MM cells overexpressing Gfi1 in mice induced increased bone destruction, increased osteoclast number and size, and enhanced tumor growth. CONCLUSIONS: These results support that Gfi1 plays a key role in MM tumor growth, survival, and bone destruction and contributes to bortezomib resistance, suggesting that Gfi1 may be a novel therapeutic target for MM.Item The novel histone deacetylase inhibitor, AR-42, inhibits gp130/Stat3 pathway and induces apoptosis and cell cycle arrest in multiple myeloma cells(Wiley, 2011-07-01) Zhang, Shuhong; Suvannasankha, Attaya; Crean, Colin D.; White, Valerie L.; Chen, Ching-Shih; Farag, Sherif S.; Department of Internal Medicine, IU School of MedicineMultiple myeloma (MM) remains incurable with current therapy, indicating the need for continued development of novel therapeutic agents. We evaluated the activity of a novel phenylbutyrate-derived histone deacetylase inhibitor, AR-42, in primary human myeloma cells and cell lines. AR-42 was cytotoxic to MM cells at a mean LC(50) of 0.18 ± 0.06 μmol/l at 48 hr and induced apoptosis with cleavage of caspases 8, 9 and 3, with cell death largely prevented by caspase inhibition. AR-42 downregulated the expression of gp130 and inhibited activation of STAT3, with minimal effects on the PI3K/Akt and MAPK pathways, indicating a predominant effect on the gp130/STAT-3 pathway. AR-42 also inhibited interleukin (IL)-6-induced STAT3 activation, which could not be overcome by exogenous IL-6. AR-42 also downregulated the expression of STAT3-regulated targets, including Bcl-xL and cyclin D1. Overexpression of Bcl-xL by a lentivirus construct partly protected against cell death induced by AR-42. The cyclin dependent kinase inhibitors, p16 and p21, were also significantly induced by AR-42, which together with a decrease in cyclin D1, resulted in G(1) and G(2) cell cycle arrest. In conclusion, AR-42 has potent cytotoxicity against MM cells mainly through gp130/STAT-3 pathway. The results provide rationale for clinical investigation of AR-42 in MM.