- Browse by Author
Browsing by Author "Cook, Lola"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
Item Clinical genetic counselor experience in the adoption of telehealth in the United States and Canada during the COVID-19 pandemic(Wiley, 2021) Ma, Daria; Ahimaz, Priyanka R.; Mirocha, James M.; Cook, Lola; Giordano, Jessica L.; Mohan, Pooja; Cohen, Stephanie A.; Medical and Molecular Genetics, School of MedicineThe COVID‐19 pandemic has significantly impacted the service delivery model (SDM) of clinical genetic counseling across the United States and Canada. A cross‐sectional survey was distributed to 4,956 genetic counselors (GCs) from the American Board of Genetic Counselors and Canadian Association of Genetic Counselors mailing lists in August 2020 to assess the change in utilization of telehealth for clinical genetic counseling during the COVID‐19 pandemic compared with prior to the pandemic. Data from 411 eligible clinical genetic counselors on GC attitudes and their experiences prior to and during the pandemic were collected and analyzed to explore the change in SDM, change in appointment characteristics, change in billing practices, GC perceived benefits and limitations of telehealth, and prediction of future trends in SDM in the post‐pandemic era. The study showed the overall utilization of audiovisual and telephone encounters increased by 43.4% and 26.2%, respectively. The majority of respondents who provided audiovisual and telephone encounters reported increased patient volume compared with prior to the pandemic, with an average increase of 79.4% and 42.8%, respectively. There was an increase of 69.4% of GCs rendering genetic services from home offices. The percentage of participants who billed for telehealth services increased from 45.7% before the pandemic to 80.3% during the pandemic. The top GC perceived benefits of telehealth included safety for high‐risk COVID patients (95.2%) and saved commute time for patients (94.7%). The top GC perceived limitations of telehealth included difficulty to conduct physician evaluation/coordinating with healthcare providers (HCP) (73.7%) and difficulty addressing non‐English speaking patients (68.5%). Overall, 89.6% of GCs were satisfied with telehealth; however, 55.3% reported uncertainty whether the newly adopted SDM would continue after the pandemic subsides. Results from this study demonstrate the rapid adoption of telehealth for clinical genetic counseling services as a result of the COVID‐19 pandemic, an increase in billing for these services, and support the feasibility of telehealth for genetic counseling as a longer term solution to reach patients who are geographically distant.Item Factors Influencing Patient Disclosure of Parkinson's Disease Genetic Testing Results to Relatives(Wiley, 2024) Schulze, Jeanine; Dhaliwal, Jasmine Kaur; Miller, Mandy; Quinn, Emily; Wetherill, Leah; Cook, Lola; Medical and Molecular Genetics, School of MedicineBackground: Persons with Parkinson's disease (PD) who have received genetic test results are faced with the decision of whether, and how, to share that information with family. Studies in other specialties have shown high rates of disclosure motivated by a sense of responsibility. Rates of, and attitudes surrounding, disclosure have yet to be reported in this population. Objectives: To explore the disclosure practices and motivations of patients with PD regarding genetic test results, allowing insight to guide genetic counseling and navigation of test result discussions. Methods: A cross-sectional online survey was distributed to adults with PD and previous genetic test results. Survey questions assessed demographics, genetic testing results and delivery, sharing behaviors, perceptions of PD, and motivations and barriers to family disclosure. Results: Among respondents, 88.9% shared results with at least one family member, most often a child (73.5%) or sibling (65.4%). Seventy-four percent reported sharing results with someone outside of their family, most frequently a friend (88.4%). The most common motivation for disclosure was the perception that family members would want to know. Barriers to disclosure were lack of close relationships, understanding results, and perceived utility. Conclusions: Disclosure rates in this PD population were consistent with those in previously reported populations. Motivations were anchored in perceptions of utility and family desire for information, suggesting a need to adjust patient education to improve retention and to explore family dynamics and perceptions of results.Item Genetic Testing for Parkinson Disease: Are We Ready?(American Academy of Neurology, 2021-02) Cook, Lola; Schulze, Jeanine; Kopil, Catherine; Hastings, Tara; Naito, Anna; Wojcieszek, Joanne; Payne, Katelyn; Alcalay, Roy N.; Klein, Christine; Saunders-Pullman, Rachel; Simuni, Tatyana; Foroud, Tatiana; Medical and Molecular Genetics, School of MedicinePurpose of review: With the advent of precision medicine and demand for genomic testing information, we may question whether it is time to offer genetic testing to our patients with Parkinson disease (PD). This review updates the current genetic landscape of PD, describes what genetic testing may offer, provides strategies for evaluating whom to test, and provides resources for the busy clinician. Recent findings: Patients with PD and their relatives, in various settings, have expressed an interest in learning their PD genetic status; however, physicians may be hesitant to widely offer testing due to the perceived low clinical utility of PD genetic test results. The rise of clinical trials available for patients with gene-specific PD and emerging information on genotype-phenotype correlations are starting to shift this discussion about testing. Summary: By learning more about the various genetic testing options for PD and utility of results for patients and their care, clinicians may become more comfortable with widespread PD genetic testing in the research and clinical setting.Item Genetic Testing in Parkinson's Disease(Wiley, 2023) Pal, Gian; Cook, Lola; Schulze, Jeanine; Verbrugge, Jennifer; Alcalay, Roy N.; Merello, Marcelo; Sue, Carolyn M.; Bardien, Soraya; Bonifati, Vincenzo; Chung, Sun Ju; Foroud, Tatiana; Gatto, Emilia; Hall, Anne; Hattori, Nobutaka; Lynch, Tim; Marder, Karen; Mascalzoni, Deborah; Novaković, Ivana; Thaler, Avner; Raymond, Deborah; Salari, Mehri; Shalash, Ali; Suchowersky, Oksana; Mencacci, Niccolò E.; Simuni, Tanya; Saunders-Pullman, Rachel; Klein, Christine; Medical and Molecular Genetics, School of MedicineGenetic testing for persons with Parkinson's disease is becoming increasingly common. Significant gains have been made regarding genetic testing methods, and testing is becoming more readily available in clinical, research, and direct-to-consumer settings. Although the potential utility of clinical testing is expanding, there are currently no proven gene-targeted therapies, but clinical trials are underway. Furthermore, genetic testing practices vary widely, as do knowledge and attitudes of relevant stakeholders. The specter of testing mandates financial, ethical, and physician engagement, and there is a need for guidelines to help navigate the myriad of challenges. However, to develop guidelines, gaps and controversies need to be clearly identified and analyzed. To this end, we first reviewed recent literature and subsequently identified gaps and controversies, some of which were partially addressed in the literature, but many of which are not well delineated or researched. Key gaps and controversies include: (1) Is genetic testing appropriate in symptomatic and asymptomatic individuals without medical actionability? (2) How, if at all, should testing vary based on ethnicity? (3) What are the long-term outcomes of consumer- and research-based genetic testing in presymptomatic PD? (4) What resources are needed for clinical genetic testing, and how is this impacted by models of care and cost-benefit considerations? Addressing these issues will help facilitate the development of consensus and guidelines regarding the approach and access to genetic testing and counseling. This is also needed to guide a multidisciplinary approach that accounts for cultural, geographic, and socioeconomic factors in developing testing guidelines.Item International Genetic Testing and Counseling Practices for Parkinson's Disease(Wiley, 2023) Saunders-Pullman, Rachel; Raymond, Deborah; Ortega, Roberto A.; Shalash, Ali; Gatto, Emilia; Salari, Mehri; Markgraf, Maggie; Alcalay, Roy N.; Mascalzoni, Deborah; Mencacci, Niccolò E.; Bonifati, Vincenzo; Merello, Marcelo; Chung, Sun Ju; Novakovic, Ivana; Bardien, Soraya; Pal, Gian; Hall, Anne; Hattori, Nobutaka; Lynch, Timothy; Thaler, Avner; Sue, Carolyn M.; Foroud, Tatiana; Verbrugge, Jennifer; Schulze, Jeanine; Cook, Lola; Marder, Karen; Suchowersky, Oksana; Klein, Christine; Simuni, Tatyana; Medical and Molecular Genetics, School of MedicineBackground: There is growing clinical and research utilization of genetic testing in Parkinson's disease (PD), including direct-to-consumer testing. Objectives: The aim is to determine the international landscape of genetic testing in PD to inform future worldwide recommendations. Methods: A web-based survey assessing current practices, concerns, and barriers to genetic testing and counseling was administered to the International Parkinson and Movement Disorders Society membership. Results: Common hurdles across sites included cost and access to genetic testing, and counseling, as well as education on genetic counseling. Region-dependent differences in access to and availability of testing and counseling were most notable in Africa. High-income countries also demonstrated heterogeneity, with European nations more likely to have genetic testing covered through insurance than Pan-American and Asian countries. Conclusions: This survey highlights not only diversity of barriers in different regions but also the shared and highly actionable needs for improved education and access to genetic counseling and testing for PD worldwide. © 2023 International Parkinson and Movement Disorder Society.Item Parkinson's disease variant detection and disclosure: PD GENEration, a North American study(Oxford University Press, 2024) Cook, Lola; Verbrugge, Jennifer; Schwantes-An, Tae-Hwi; Schulze, Jeanine; Foroud, Tatiana; Hall, Anne; Marder, Karen S.; Mata, Ignacio F.; Mencacci, Niccolò E.; Nance, Martha A.; Schwarzschild, Michael A.; Simuni, Tanya; Bressman, Susan; Wills, Anne-Marie; Fernandez, Hubert H.; Litvan, Irene; Lyons, Kelly E.; Shill, Holly A.; Singer, Carlos; Tropea, Thomas F.; Vanegas Arroyave, Nora; Carbonell, Janfreisy; Cruz Vicioso, Rossy; Katus, Linn; Quinn, Joseph F.; Hodges, Priscila D.; Meng, Yan; Strom, Samuel P.; Blauwendraat, Cornelis; Lohmann, Katja; Casaceli, Cynthia; Rao, Shilpa C.; Ghosh Galvelis, Kamalini; Naito, Anna; Beck, James C.; Alcalay, Roy N.; Medical and Molecular Genetics, School of MedicineVariants in seven genes (LRRK2, GBA1, PRKN, SNCA, PINK1, PARK7 and VPS35) have been formally adjudicated as causal contributors to Parkinson's disease; however, individuals with Parkinson's disease are often unaware of their genetic status since clinical testing is infrequently offered. As a result, genetic information is not incorporated into clinical care, and variant-targeted precision medicine trials struggle to enrol people with Parkinson's disease. Understanding the yield of genetic testing using an established gene panel in a large, geographically diverse North American population would help patients, clinicians, clinical researchers, laboratories and insurers better understand the importance of genetics in approaching Parkinson's disease. PD GENEration is an ongoing multi-centre, observational study (NCT04057794, NCT04994015) offering genetic testing with results disclosure and genetic counselling to those in the US (including Puerto Rico), Canada and the Dominican Republic, through local clinical sites or remotely through self-enrolment. DNA samples are analysed by next-generation sequencing including deletion/duplication analysis (Fulgent Genetics) with targeted testing of seven major Parkinson's disease-related genes. Variants classified as pathogenic/likely pathogenic/risk variants are disclosed to all tested participants by either neurologists or genetic counsellors. Demographic and clinical features are collected at baseline visits. Between September 2019 and June 2023, the study enrolled 10 510 participants across >85 centres, with 8301 having received results. Participants were: 59% male; 86% White, 2% Asian, 4% Black/African American, 9% Hispanic/Latino; mean age 67.4 ± 10.8 years. Reportable genetic variants were observed in 13% of all participants, including 18% of participants with one or more 'high risk factors' for a genetic aetiology: early onset (<50 years), high-risk ancestry (Ashkenazi Jewish/Basque/North African Berber), an affected first-degree relative; and, importantly, in 9.1% of people with none of these risk factors. Reportable variants in GBA1 were identified in 7.7% of all participants; 2.4% in LRRK2; 2.1% in PRKN; 0.1% in SNCA; and 0.2% in PINK1, PARK7 or VPS35 combined. Variants in more than one of the seven genes were identified in 0.4% of participants. Approximately 13% of study participants had a reportable genetic variant, with a 9% yield in people with no high-risk factors. This supports the promotion of universal access to genetic testing for Parkinson's disease, as well as therapeutic trials for GBA1 and LRRK2-related Parkinson's disease.Item The Promise and Pitfalls of Facebook Advertising: a Genetic Counselor’s Perspective(Springer, 2018-04) Verbrugge, Jennifer; Rumbaugh, Malia; Cook, Lola; Schulze, Jeanine; Miller, Mandy; Heathers, Laura; Arnedo, Vanessa; Kuhl, Maggie McGuire; Foroud, Tatiana; Medical and Molecular Genetics, School of MedicineFacebook advertising is a powerful tool for increasing the outreach and recruitment of research participants. We describe our experience as genetic counselors within the context of an internet-based research study, recruiting subjects for a Parkinson disease (PD) biomarker study.Item Readiness for Parkinson’s disease genetic testing and counseling in patients and their relatives in urban settings in the Dominican Republic(Springer Nature, 2023-08-29) Hackl, Margaret; Cook, Lola; Wetherill, Leah; Walsh, Laurence E.; Delk, Paula; De León, Rebeca; Carbonell, Janfreisy; Cruz Vicioso, Rossy; Delgado Hodges, Priscila; Medical and Molecular Genetics, School of MedicineGenetic testing for Parkinson’s disease (PD) is increasing globally, and genetic counseling is an important service that provides information and promotes understanding about PD genetics and genetic testing. PD research studies have initiated outreach to underrepresented regions in North America, including regions in Latin America, such as the Dominican Republic (DR); some studies may include return of genetic test results. Thus, understanding what individuals know about PD, genetic testing for PD, and their interest in speaking with a genetic counselor, is crucial when assessing readiness. In this cross-sectional study, a survey was distributed to people with Parkinson’s disease (PwP) and their unaffected biological relatives in the DR. Questions assessed genetics knowledge, attitude toward genetic testing, and interest in genetic testing and counseling. Of 45 participants, 69% scored the maximum on the attitude scale, indicating an overall positive attitude toward genetic testing; 95% indicated interest in genetic testing for PD, and 98% were at least somewhat interested in meeting with a genetic counselor. The mean PD genetics knowledge score was similar to previously published data. Through free text responses, participants expressed a desire to know more about PD treatment and management, prevention, cause, and their personal risk for PD. These results provide further evidence of readiness for genetic testing in this country but also underscore some gaps in knowledge that should be addressed with targeted educational efforts, as part of building genetic testing and counseling capacities.Item The Commercial Genetic Testing Landscape for Parkinson’s Disease(Elsevier, 2021) Cook, Lola; Schulze, Jeanine; Verbrugge, Jennifer; Beck, James C.; Marder, Karen S.; Saunders-Pullman, Rachel; Klein, Christine; Naito, Anna; Alcalay, Roy N.; ClinGen Parkinson’s Disease Gene Curation Expert Panel; MDS Task Force for Recommendations for Genetic Testing in Parkinson’s Disease; Medical and Molecular Genetics, School of MedicineIntroduction: There have been no specific guidelines regarding which genes should be tested in the clinical setting for Parkinson's disease (PD) or parkinsonism. We evaluated the types of clinical genetic testing offered for PD as the first step of our gene curation. Methods: The National Institutes of Health (NIH) Genetic Testing Registry (GTR) was queried on 12/7/2020 to identify current commercial PD genetic test offerings by clinical laboratories, internationally. Results: We identified 502 unique clinical genetic tests for PD, from 28 Clinical Laboratory Improvement Amendments (CLIA)-approved clinical laboratories. These included 11 diagnostic PD panels. The panels were notable for their differences in size, ranging from 5 to 62 genes. Five genes for variant query were included in all panels (SNCA, PRKN, PINK-1, PARK7 (DJ1), and LRRK2). Notably, the addition of the VPS35 and GBA genes was variable. Panel size differences stemmed from inclusion of genes linked to atypical parkinsonism and dystonia disorders, and genes in which the link to PD causation is controversial. Conclusion: There is an urgent need for expert opinion regarding which genes should be included in a commercial laboratory multi-gene panel for PD.Item Tools for communicating risk for Parkinson's disease(Springer Nature, 2022-11-29) Cook, Lola; Schulze, Jeanine; Uhlmann, Wendy R.; Verbrugge, Jennifer; Marder, Karen; Lee, Annie J.; Wang, Yuanjia; Alcalay, Roy N.; Nance, Martha; Beck, James C.; Medical and Molecular Genetics, School of MedicineWe have greater knowledge about the genetic contributions to Parkinson’s disease (PD) with major gene discoveries occurring in the last few decades and the identification of risk alleles revealed by genome-wide association studies (GWAS). This has led to increased genetic testing fueled by both patient and consumer interest and emerging clinical trials targeting genetic forms of the disease. Attention has turned to prodromal forms of neurodegenerative diseases, including PD, resulting in assessments of individuals at risk, with genetic testing often included in the evaluation. These trends suggest that neurologists, clinical geneticists, genetic counselors, and other clinicians across primary care and various specialties should be prepared to answer questions about PD genetic risks and test results. The aim of this article is to provide genetic information for professionals to use in their communication to patients and families who have experienced PD. This includes up-to-date information on PD genes, variants, inheritance patterns, and chances of disease to be used for risk counseling, as well as insurance considerations and ethical issues.