- Browse by Author
Browsing by Author "Cong, Wang"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Genome-wide network-based pathway analysis of CSF t-tau/Aβ1-42 ratio in the ADNI cohort(Springer Nature, 2017-05-30) Cong, Wang; Meng, Xianglian; Li, Jin; Zhang, Qiushi; Chen, Feng; Liu, Wenjie; Wang, Ying; Cheng, Sipu; Yao, Xiaohui; Yan, Jingwen; Kim, Sungeun; Saykin, Andrew J.; Liang, Hong; Shen, Li; Alzheimer’s Disease Neuroimaging Initiative; Radiology and Imaging Sciences, School of MedicineBACKGROUND: The cerebrospinal fluid (CSF) levels of total tau (t-tau) and Aβ1-42 are potential early diagnostic markers for probable Alzheimer's disease (AD). The influence of genetic variation on these CSF biomarkers has been investigated in candidate or genome-wide association studies (GWAS). However, the investigation of statistically modest associations in GWAS in the context of biological networks is still an under-explored topic in AD studies. The main objective of this study is to gain further biological insights via the integration of statistical gene associations in AD with physical protein interaction networks. RESULTS: The CSF and genotyping data of 843 study subjects (199 CN, 85 SMC, 239 EMCI, 207 LMCI, 113 AD) from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were analyzed. PLINK was used to perform GWAS on the t-tau/Aβ1-42 ratio using quality controlled genotype data, including 563,980 single nucleotide polymorphisms (SNPs), with age, sex and diagnosis as covariates. Gene-level p-values were obtained by VEGAS2. Genes with p-value ≤ 0.05 were mapped on to a protein-protein interaction (PPI) network (9,617 nodes, 39,240 edges, from the HPRD Database). We integrated a consensus model strategy into the iPINBPA network analysis framework, and named it as CM-iPINBPA. Four consensus modules (CMs) were discovered by CM-iPINBPA, and were functionally annotated using the pathway analysis tool Enrichr. The intersection of four CMs forms a common subnetwork of 29 genes, including those related to tau phosphorylation (GSK3B, SUMO1, AKAP5, CALM1 and DLG4), amyloid beta production (CASP8, PIK3R1, PPA1, PARP1, CSNK2A1, NGFR, and RHOA), and AD (BCL3, CFLAR, SMAD1, and HIF1A). CONCLUSIONS: This study coupled a consensus module (CM) strategy with the iPINBPA network analysis framework, and applied it to the GWAS of CSF t-tau/Aβ1-42 ratio in an AD study. The genome-wide network analysis yielded 4 enriched CMs that share not only genes related to tau phosphorylation or amyloid beta production but also multiple genes enriching several KEGG pathways such as Alzheimer's disease, colorectal cancer, gliomas, renal cell carcinoma, Huntington's disease, and others. This study demonstrated that integration of gene-level associations with CMs could yield statistically significant findings to offer valuable biological insights (e.g., functional interaction among the protein products of these genes) and suggest high confidence candidates for subsequent analyses.Item Identification of rifampin-regulated functional modules and related microRNAs in human hepatocytes based on the protein interaction network(BioMed Central, 2016-08-22) Li, Jin; Wang, Ying; Dai, Xuefeng; Cong, Wang; Feng, Weixing; Xu, Chengzhen; Deng, Yulin; Wang, Yue; Skaar, Todd C.; Liang, Hong; Liu, Yunlong; Wang, Lei; Department of Medical and Molecular Genetics, IU School of MedicineBACKGROUND: In combination with gene expression profiles, the protein interaction network (PIN) constructs a dynamic network that includes multiple functional modules. Previous studies have demonstrated that rifampin can influence drug metabolism by regulating drug-metabolizing enzymes, transporters, and microRNAs (miRNAs). Rifampin induces gene expression, at least in part, by activating the pregnane X receptor (PXR), which induces gene expression; however, the impact of rifampin on global gene regulation has not been examined under the molecular network frameworks. METHODS: In this study, we extracted rifampin-induced significant differentially expressed genes (SDG) based on the gene expression profile. By integrating the SDG and human protein interaction network (HPIN), we constructed the rifampin-regulated protein interaction network (RrPIN). Based on gene expression measurements, we extracted a subnetwork that showed enriched changes in molecular activity. Using the Kyoto Encyclopedia of Genes and Genomes (KEGG), we identified the crucial rifampin-regulated biological pathways and associated genes. In addition, genes targeted by miRNAs that were significantly differentially expressed in the miRNA expression profile were extracted based on the miRNA-gene prediction tools. The miRNA-regulated PIN was further constructed using associated genes and miRNAs. For each miRNA, we further evaluated the potential impact by the gene interaction network using pathway analysis. RESULTS AND DISCCUSSION: We extracted the functional modules, which included 84 genes and 89 interactions, from the RrPIN, and identified 19 key rifampin-response genes that are associated with seven function pathways that include drug response and metabolism, and cancer pathways; many of the pathways were supported by previous studies. In addition, we identified that a set of 6 genes (CAV1, CREBBP, SMAD3, TRAF2, KBKG, and THBS1) functioning as gene hubs in the subnetworks that are regulated by rifampin. It is also suggested that 12 differentially expressed miRNAs were associated with 6 biological pathways. CONCLUSIONS: Our results suggest that rifampin contributes to changes in the expression of genes by regulating key molecules in the protein interaction networks. This study offers valuable insights into rifampin-induced biological mechanisms at the level of miRNAs, genes and proteins.Item Integrative network analysis of rifampinregulated miRNAs and their functions in human hepatocytes(IOS, 2015) Li, Jin; Wang, Ying; Wang, Lei; Liang, Hong; Feng, Weixing; Meng, Xianglian; Cong, Wang; Liu, Yunlong; Department of Medical & Molecular Genetics, IU School of MedicineRifampin is an important drug used in the treatment of tuberculosis, and it increases the drug metabolism in human hepatocytes. Previous studies have shown that rifampin can indirectly influence drug deposition through the regulation of molecular interactions of miRNA, PXR and other genes. The potential functions of miRNAs associated with rifampin- induced drug disposition are poorly understood. In this study, significantly differentially expressed miRNAs (SDEM) were extracted and used to predict the miRNA-regulated co-expression target genes (MCeTG). Additionally, a miRNA-regulated co-expressed protein interaction network (MCePIN) was constructed for SDEM by extending from the protein interaction network (PIN). The functioning of the miRNAs were analyzed using GO analysis and KEGG pathway enrichment analysis. A total of 20 miRNAs belonging to SDEM were identified, and 632 miRNA-regulated genes were predicted. The MCePIN was constructed by extending from PIN, and 10 miRNAs and 33 genes that are relevant to 7 functions, including response to wounding, wound healing, response to drug, defense response, inflammatory response, liver development and drug metabolism, were discerned. The results provided by this study offer valuable insights into the effect of rifampin on miRNAs, genes and protein levels.