- Browse by Author
Browsing by Author "Collins, Kimberly S."
Now showing 1 - 10 of 16
Results Per Page
Sort Options
Item Alterations in Protein Translation and Carboxylic Acid Catabolic Processes in Diabetic Kidney Disease(MDPI, 2022-03-30) Collins, Kimberly S.; Eadon, Michael T.; Cheng, Ying-Hua; Barwinska, Daria; Ferreira, Ricardo Melo; McCarthy, Thomas W.; Janosevic, Danielle; Syed, Farooq; Maier, Bernhard; El-Achkar, Tarek M.; Kelly, Katherine J.; Phillips, Carrie L.; Hato, Takashi; Sutton, Timothy A.; Dagher, Pierre C.; Medicine, School of MedicineDiabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease despite decades of study. Alterations in the glomerulus and kidney tubules both contribute to the pathogenesis of DKD although the majority of investigative efforts have focused on the glomerulus. We sought to examine the differential expression signature of human DKD in the glomerulus and proximal tubule and corroborate our findings in the db/db mouse model of diabetes. A transcriptogram network analysis of RNAseq data from laser microdissected (LMD) human glomerulus and proximal tubule of DKD and reference nephrectomy samples revealed enriched pathways including rhodopsin-like receptors, olfactory signaling, and ribosome (protein translation) in the proximal tubule of human DKD biopsy samples. The translation pathway was also enriched in the glomerulus. Increased translation in diabetic kidneys was validated using polyribosomal profiling in the db/db mouse model of diabetes. Using single nuclear RNA sequencing (snRNAseq) of kidneys from db/db mice, we prioritized additional pathways identified in human DKD. The top overlapping pathway identified in the murine snRNAseq proximal tubule clusters and the human LMD proximal tubule compartment was carboxylic acid catabolism. Using ultra-performance liquid chromatography-mass spectrometry, the fatty acid catabolism pathway was also found to be dysregulated in the db/db mouse model. The Acetyl-CoA metabolite was down-regulated in db/db mice, aligning with the human differential expression of the genes ACOX1 and ACACB. In summary, our findings demonstrate that proximal tubular alterations in protein translation and carboxylic acid catabolism are key features in both human and murine DKD.Item Clinical, histopathologic and molecular features of idiopathic and diabetic nodular mesangial sclerosis in humans(Oxford University Press, 2021) Eadon, Michael T.; Lampe, Sam; Baig, Mirza M.; Collins, Kimberly S.; Ferreira, Ricardo Melo; Mang, Henry; Cheng, Ying-Hua; Barwinska, Daria; El-Achkar, Tarek M.; Schwantes-An, Tae-Hwi; Winfree, Seth; Temm, Constance J.; Ferkowicz, Michael J.; Dunn, Kenneth W.; Kelly, Katherine J.; Sutton, Timothy A.; Moe, Sharon M.; Moorthi, Ranjani N.; Phillips, Carrie L.; Dagher, Pierre C.; Medicine, School of MedicineBackground: Idiopathic nodular mesangial sclerosis, also called idiopathic nodular glomerulosclerosis (ING), is a rare clinical entity with an unclear pathogenesis. The hallmark of this disease is the presence of nodular mesangial sclerosis on histology without clinical evidence of diabetes mellitus or other predisposing diagnoses. To achieve insights into its pathogenesis, we queried the clinical, histopathologic and transcriptomic features of ING and nodular diabetic nephropathy (DN). Methods: All renal biopsy reports accessioned at Indiana University Health from 2001 to 2016 were reviewed to identify 48 ING cases. Clinical and histopathologic features were compared between individuals with ING and DN (n = 751). Glomeruli of ING (n = 5), DN (n = 18) and reference (REF) nephrectomy (n = 9) samples were isolated by laser microdissection and RNA was sequenced. Immunohistochemistry of proline-rich 36 (PRR36) protein was performed. Results: ING subjects were frequently hypertensive (95.8%) with a smoking history (66.7%). ING subjects were older, had lower proteinuria and had less hyaline arteriolosclerosis than DN subjects. Butanoate metabolism was an enriched pathway in ING samples compared with either REF or DN samples. The top differentially expressed gene, PRR36, had increased expression in glomeruli 248-fold [false discovery rate (FDR) P = 5.93 × 10-6] compared with the REF and increased 109-fold (FDR P = 1.85 × 10-6) compared with DN samples. Immunohistochemistry revealed a reduced proportion of cells with perinuclear reaction in ING samples as compared to DN. Conclusions: Despite similar clinical and histopathologic characteristics in ING and DN, the uncovered transcriptomic signature suggests that ING has distinct molecular features from nodular DN. Further study is warranted to understand these relationships.Item Genotype-Guided Hydralazine Therapy(Karger, 2020) Collins, Kimberly S.; Raviele, Anthony L.J.; Elchynski, Amanda L.; Woodcock, Alexander M.; Zhao, Yang; Cooper-DeHoff, Rhonda M.; Eadon, Michael T.; Medicine, School of MedicineBackground: Despite its approval in 1953, hydralazine hydrochloride continues to be used in the management of resistant hypertension, a condition frequently managed by nephrologists and other clinicians. Hydralazine hydrochloride undergoes metabolism by the N-acetyltransferase 2 (NAT2) enzyme. NAT2 is highly polymorphic as approximately 50% of the general population are slow acetylators. In this review, we first evaluate the link between NAT2 genotype and phenotype. We then assess the evidence available for genotype-guided therapy of hydralazine, specifically addressing associations of NAT2 acetylator status with hydralazine pharmacokinetics, antihypertensive efficacy, and toxicity. Summary: There is a critical need to use hydralazine in some patients with resistant hypertension. Available evidence supports a significant link between genotype and NAT2 enzyme activity as 29 studies were identified with an overall concordance between genotype and phenotype of 92%. The literature also supports an association between acetylator status and hydralazine concentration, as fourteen of fifteen identified studies revealed significant relationships with a consistent direction of effect. Although fewer studies are available to directly link acetylator status with hydralazine antihypertensive efficacy, the evidence from this smaller set of studies is significant in 7 of 9 studies identified. Finally, 5 studies were identified which support the association of acetylator status with hydralazine-induced lupus. Clinicians should maintain vigilance when prescribing maximum doses of hydralazine. Key Messages: NAT2 slow acetylator status predicts increased hydralazine levels, which may lead to increased efficacy and adverse effects. Caution should be exercised in slow acetylators with total daily hydralazine doses of 200 mg or more. Fast acetylators are at risk for inefficacy at lower doses of hydralazine. With appropriate guidance on the usage of NAT2 genotype, clinicians can adopt a personalized approach to hydralazine dosing and prescription, enabling more efficient and safe treatment of resistant hypertension.Item Implementation of a Renal Precision Medicine Program: Clinician Attitudes and Acceptance(MDPI, 2020-03-26) Spiech, Katherine M.; Tripathy, Purnima R.; Woodcock, Alex M.; Sheth, Nehal A.; Collins, Kimberly S.; Kannegolla, Karthik; Sinha, Arjun D.; Sharfuddin, Asif A.; Pratt, Victoria M.; Khalid, Myda; Hains, David S.; Moe, Sharon M.; Skaar, Todd C.; Moorthi, Ranjani N.; Eadon, Michael T.; Medicine, School of MedicineA precision health initiative was implemented across a multi-hospital health system, wherein a panel of genetic variants was tested and utilized in the clinical care of chronic kidney disease (CKD) patients. Pharmacogenomic predictors of antihypertensive response and genomic predictors of CKD were provided to clinicians caring for nephrology patients. To assess clinician knowledge, attitudes, and willingness to act on genetic testing results, a Likert-scale survey was sent to and self-administered by these nephrology providers (N = 76). Most respondents agreed that utilizing pharmacogenomic-guided antihypertensive prescribing is valuable (4.0 ± 0.7 on a scale of 1 to 5, where 5 indicates strong agreement). However, the respondents also expressed reluctance to use genetic testing for CKD risk stratification due to a perceived lack of supporting evidence (3.2 ± 0.9). Exploratory sub-group analyses associated this reluctance with negative responses to both knowledge and attitude discipline questions, thus suggesting reduced exposure to and comfort with genetic information. Given the evolving nature of genomic implementation in clinical care, further education is warranted to help overcome these perception barriers.Item Improving the Patency of Jugular Vein Catheters in Sprague-Dawley Rats by Using an Antiseptic Nitrocellulose Coating(Ingenta, 2018-09-01) De Luca, Thomas; Szilágyi, Keely L; Hargreaves, Katherine A.; Collins, Kimberly S.; Benson, Eric A.; Department of Medicine, Indiana University School of MedicinePreclinical studies in animals often require frequent blood sampling over prolonged periods. A preferred method in rats is the implantation of a polyurethane catheter into the jugular vein, with heparinized glycerol as a lock solution. However, analysis of various biologic compounds (for example, microRNA) precludes the use of heparin. We used sodium citrate as an alternative to heparin but observed more frequent loss of catheter patency. We hypothesized that this effect was due to evaporation of lock solution at the exteriorized portion of the catheter, subsequent blood infiltration into the catheter, and ultimately clot formation within the catheter. We therefore tested evaporation and its variables in vitro by using 5 common catheter materials. We used the migration of dye into vertically anchored catheters as a measure of lock displacement due to evaporation. Exposure to dry room-temperature air was sufficient to cause dye migration against gravity, whereas a humid environment and adding glycerol to the lock solution mitigated this effect, thus confirming loss of the lock solution from the catheter by evaporation. We tested 4 catheter treatments for the ability to reduce lock evaporation. Results were validated in vivo by using male Sprague-Dawley rats (n = 12) implanted with polyurethane jugular vein catheters and randomized to receive a nitrocellulose-based coating on the exteriorized portion of the catheter. Coating the catheters significantly improved patency, as indicated by a Kaplan-Meier log-rank hazard ratio greater than 5 in untreated catheters. We here demonstrate that a simple nitrocellulose coating reduces evaporation from and thus prolongs the patency of polyurethane catheters in rats.Item In Vivo siRNA Delivery and Rebound of Renal LRP2 in Mice(Hindawi Publishing Corporation, 2017) Eadon, Michael T.; Cheng, Ying-Hua; Hato, Takashi; Benson, Eric A.; Ipe, Joseph; Collins, Kimberly S.; De Luca, Thomas; El-Achkar, Tarek M.; Bacallao, Robert L.; Skaar, Todd C.; Dagher, Pierre C.; Medicine, School of MedicinesiRNA stabilized for in vivo applications is filtered and reabsorbed in the renal proximal tubule (PT), reducing mRNA expression transiently. Prior siRNA efforts have successfully prevented upregulation of mRNA in response to injury. We proposed reducing constitutive gene and protein expression of LRP2 (megalin) in order to understand its molecular regulation in mice. Using siRNA targeting mouse LRP2 (siLRP2), reduction of LRP2 mRNA expression was compared to scrambled siRNA (siSCR) in mouse PT cells. Mice received siLRP2 administration optimized for dose, administration site, carrier solution, administration frequency, and administration duration. Kidney cortex was collected upon sacrifice. Renal gene and protein expression were compared by qRT-PCR, immunoblot, and immunohistochemistry (IHC). Compared to siSCR, siLRP2 reduced mRNA expression in PT cells to 16.6% ± 0.6%. In mouse kidney cortex, siLRP2 reduced mRNA expression to 74.8 ± 6.3% 3 h and 70.1 ± 6.3% 6 h after administration. mRNA expression rebounded at 12 h (160.6 ± 11.2%). No megalin renal protein expression reduction was observed by immunoblot or IHC, even after serial twice daily dosing for 3.5 days. Megalin is a constitutively expressed protein. Although LRP2 renal mRNA expression reduction was achieved, siRNA remains a costly and inefficient intervention to reduce in vivo megalin protein expression.Item Influence of Uridine Diphosphate Glucuronosyltransferase Family 1 Member A1 and Solute Carrier Organic Anion Transporter Family 1 Member B1 Polymorphisms and Efavirenz on Bilirubin Disposition in Healthy Volunteers(ASPET, 2020-03) Collins, Kimberly S.; Metzger, Ingrid F.; Gufford, Brandon T.; Lu, Jessica B.; Medeiros, Elizabeth B.; Pratt, Victoria M.; Skaar, Todd C.; Desta, Zeruesenay; Medicine, School of MedicineChronic administration of efavirenz is associated with decreased serum bilirubin levels, probably through induction of UGT1A1. We assessed the impact of efavirenz monotherapy and UGT1A1 phenotypes on total, conjugated, and unconjugated serum bilirubin levels in healthy volunteers. Healthy volunteers were enrolled into a clinical study designed to address efavirenz pharmacokinetics, drug interactions, and pharmacogenetics. Volunteers received multiple oral doses (600 mg/day for 17 days) of efavirenz. Serum bilirubin levels were obtained at study entry and 1 week after completion of the study. DNA genotyping was performed for UGT1A1 [*80 (C>T), *6 (G>A), *28 (TA7), *36 (TA5), and *37 (TA8)] and for SLCO1B1 [*5 (521T>C) and *1b (388A>G] variants. Diplotype predicted phenotypes were classified as normal, intermediate, and slow metabolizers. Compared with bilirubin levels at screening, treatment with efavirenz significantly reduced total, conjugated, and unconjugated bilirubin. After stratification by UGT1A1 phenotypes, there was a significant decrease in total bilirubin among all phenotypes, conjugated bilirubin among intermediate metabolizers, and unconjugated bilirubin among normal and intermediate metabolizers. The data also show that UGT1A1 genotype predicts serum bilirubin levels at baseline, but this relationship is lost after efavirenz treatment. SLCO1B1 genotypes did not predict bilirubin levels at baseline or after efavirenz treatment. Our data suggest that efavirenz may alter bilirubin disposition mainly through induction of UGT1A1 metabolism and efflux through multidrug resistance–associated protein 2.Item Influence of Uridine Diphosphate Glucuronosyltransferase Family 1 Member A1 and Solute Carrier Organic Anion Transporter Family 1 Member B1 Polymorphisms and Efavirenz on Bilirubin Disposition in Healthy Volunteers(American Society for Pharmacology and Experimental Therapeutics, 2020-03) Collins, Kimberly S.; Metzger, Ingrid F.; Gufford, Brandon T.; Lu, Jessica B.; Medeiros, Elizabeth B.; Pratt, Victoria M.; Skaar, Todd C.; Desta, Zeruesenay; Medical and Molecular Genetics, School of MedicineChronic administration of efavirenz is associated with decreased serum bilirubin levels, probably through induction of UGT1A1 We assessed the impact of efavirenz monotherapy and UGT1A1 phenotypes on total, conjugated, and unconjugated serum bilirubin levels in healthy volunteers. Healthy volunteers were enrolled into a clinical study designed to address efavirenz pharmacokinetics, drug interactions, and pharmacogenetics. Volunteers received multiple oral doses (600 mg/day for 17 days) of efavirenz. Serum bilirubin levels were obtained at study entry and 1 week after completion of the study. DNA genotyping was performed for UGT1A1 [*80 (C>T), *6 (G>A), *28 (TA7), *36 (TA5), and *37 (TA8)] and for SLCO1B1 [*5 (521T>C) and *1b (388A>G] variants. Diplotype predicted phenotypes were classified as normal, intermediate, and slow metabolizers. Compared with bilirubin levels at screening, treatment with efavirenz significantly reduced total, conjugated, and unconjugated bilirubin. After stratification by UGT1A1 phenotypes, there was a significant decrease in total bilirubin among all phenotypes, conjugated bilirubin among intermediate metabolizers, and unconjugated bilirubin among normal and intermediate metabolizers. The data also show that UGT1A1 genotype predicts serum bilirubin levels at baseline, but this relationship is lost after efavirenz treatment. SLCO1B1 genotypes did not predict bilirubin levels at baseline or after efavirenz treatment. Our data suggest that efavirenz may alter bilirubin disposition mainly through induction of UGT1A1 metabolism and efflux through multidrug resistance-associated protein 2. SIGNIFICANCE STATEMENT: Efavirenz likely alters the pharmacokinetics of coadministered drugs, potentially causing lack of efficacy or increased adverse effects, as well as the disposition of endogenous compounds relevant in homeostasis through upregulation of UGT1A1 and multidrug resistance-associated protein 2. Measurement of unconjugated and conjugated bilirubin during new drug development may provide mechanistic understanding regarding enzyme and transporters modulated by the new drug.Item Integration of spatial and single-cell transcriptomics localizes epithelial cell–immune cross-talk in kidney injury(American Society for Clinical Investigation, 2021-06-22) Ferreira, Ricardo Melo; Sabo, Angela R.; Winfree, Seth; Collins, Kimberly S.; Janosevic, Danielle; Gulbronson, Connor J.; Cheng, Ying-Hua; Casbon, Lauren; Barwinska, Daria; Ferkowicz, Michael J.; Xuei, Xiaoling; Zhang, Chi; Dunn, Kenneth W.; Kelly, Katherine J.; Sutton, Timothy A.; Hato, Takashi; Dagher, Pierre C.; El-Achkar, Tarek M.; Eadon, Michael T.; Medicine, School of MedicineSingle-cell sequencing studies have characterized the transcriptomic signature of cell types within the kidney. However, the spatial distribution of acute kidney injury (AKI) is regional and affects cells heterogeneously. We first optimized coordination of spatial transcriptomics and single-nuclear sequencing data sets, mapping 30 dominant cell types to a human nephrectomy. The predicted cell-type spots corresponded with the underlying histopathology. To study the implications of AKI on transcript expression, we then characterized the spatial transcriptomic signature of 2 murine AKI models: ischemia/reperfusion injury (IRI) and cecal ligation puncture (CLP). Localized regions of reduced overall expression were associated with injury pathways. Using single-cell sequencing, we deconvoluted the signature of each spatial transcriptomic spot, identifying patterns of colocalization between immune and epithelial cells. Neutrophils infiltrated the renal medulla in the ischemia model. Atf3 was identified as a chemotactic factor in S3 proximal tubules. In the CLP model, infiltrating macrophages dominated the outer cortical signature, and Mdk was identified as a corresponding chemotactic factor. The regional distribution of these immune cells was validated with multiplexed CO-Detection by indEXing (CODEX) immunofluorescence. Spatial transcriptomic sequencing complemented single-cell sequencing by uncovering mechanisms driving immune cell infiltration and detection of relevant cell subpopulations.Item Interindividual Variability in Lymphocyte Stimulation and Transcriptomic Response Predicts Mycophenolic Acid Sensitivity in Healthy Volunteers(Wiley, 2020-11) Collins, Kimberly S.; Cheng, Ying-Hua; Ferreira, Ricardo M.; Gao, Hongyu; Dollins, Matthew D.; Janosevic, Danielle; Khan, Nida A.; White, Chloe; Dagher, Pierre C.; Eadon, Michael T.; Medicine, School of MedicineMycophenolic acid (MPA) is an immunosuppressant commonly used to prevent renal transplant rejection and treat glomerulonephritis. MPA inhibits IMPDH2 within stimulated lymphocytes, reducing guanosine synthesis. Despite the widespread use of MPA, interindividual variability in response remains with rates of allograft rejection up to 15% and approximately half of individuals fail to achieve complete remission to lupus nephritis. We sought to identify contributors to interindividual variability in MPA response, hypothesizing that the HPRT1 salvage guanosine synthesis contributes to variability. MPA sensitivity was measured in 40 healthy individuals using an ex vivo lymphocyte viability assay. Measurement of candidate gene expression (n ± 40) and single‐cell RNA‐sequencing (n ± 6) in lymphocytes was performed at baseline, poststimulation, and post‐MPA treatment. After stimulation, HPRT1 expression was 2.1‐fold higher in resistant individuals compared with sensitive individuals (P ± 0.049). Knockdown of HPRT1 increased MPA sensitivity (12%; P ± 0.003), consistent with higher expression levels in resistant individuals. Sensitive individuals had higher IMPDH2 expression and 132% greater stimulation. In lymphocyte subpopulations, differentially expressed genes between sensitive and resistant individuals included KLF2 and LTB. Knockdown of KLF2 and LTB aligned with the predicted direction of effect on proliferation. In sensitive individuals, more frequent receptor‐ligand interactions were observed after stimulation (P ± 0.0004), but fewer interactions remained after MPA treatment (P ± 0.0014). These data identify a polygenic transcriptomic signature in lymphocyte subpopulations predictive of MPA response. The degree of lymphocyte stimulation, HPRT1, KLF2, and LTB expression may serve as markers of MPA efficacy.