- Browse by Author
Browsing by Author "Coates, Bria M."
Now showing 1 - 10 of 15
Results Per Page
Sort Options
Item Author Correction: Cross-reactive immunity against the SARS-CoV-2 Omicron variant is low in pediatric patients with prior COVID-19 or MIS-C(Springer Nature, 2022-08-12) Tang, Juanjie; Novak, Tanya; Hecker, Julian; Grubbs, Gabrielle; Zahra, Fatema Tuz; Bellusci, Lorenza; Pourhashemi, Sara; Chou, Janet; Moffitt, Kristin; Halasa, Natasha B.; Schwartz, Stephanie P.; Walker, Tracie C.; Tarquinio, Keiko M.; Zinter, Matt S.; Staat, Mary A.; Gertz, Shira J.; Cvijanovich, Natalie Z.; Schuster, Jennifer E.; Loftis, Laura L.; Coates, Bria M.; Mack, Elizabeth H.; Irby, Katherine; Fitzgerald, Julie C.; Rowan, Courtney M.; Kong, Michele; Flori, Heidi R.; Maddux, Aline B.; Shein, Steven L.; Crandall, Hillary; Hume, Janet R.; Hobbs, Charlotte V.; Tremoulet, Adriana H.; Shimizu, Chisato; Burns, Jane C.; Chen, Sabrina R.; Moon, Hye Kyung; Lange, Christoph; Randolph, Adrienne G.; Khurana, Surender; Pediatrics, School of MedicineCorrection to: Nature Communications 10.1038/s41467-022-30649-1, published online 27 May 2022Item BNT162b2 mRNA Vaccination Against Coronavirus Disease 2019 is Associated With a Decreased Likelihood of Multisystem Inflammatory Syndrome in Children Aged 5-18 Years-United States, July 2021 - April 2022(Oxford University Press, 2023) Zambrano, Laura D.; Newhams, Margaret M.; Olson, Samantha M.; Halasa, Natasha B.; Price, Ashley M.; Orzel, Amber O.; Young, Cameron C.; Boom, Julie A.; Sahni, Leila C.; Maddux, Aline B.; Bline, Katherine E.; Kamidani, Satoshi; Tarquinio, Keiko M.; Chiotos, Kathleen; Schuster, Jennifer E.; Cullimore, Melissa L.; Heidemann, Sabrina M.; Hobbs, Charlotte V.; Nofziger, Ryan A.; Pannaraj, Pia S.; Cameron, Melissa A.; Walker, Tracie C.; Schwartz, Stephanie P.; Michelson, Kelly N.; Coates, Bria M.; Flori, Heidi R.; Mack, Elizabeth H.; Smallcomb, Laura; Gertz, Shira J.; Bhumbra, Samina S.; Bradford, Tamara T.; Levy, Emily R.; Kong, Michele; Irby, Katherine; Cvijanovich, Natalie Z.; Zinter, Matt S.; Bowens, Cindy; Crandall, Hillary; Hume, Janet R.; Patel, Manish M.; Campbell, Angela P.; Randolph, Adrienne G.; Overcoming COVID-19 Investigators; Pediatrics, School of MedicineBackground: Multisystem inflammatory syndrome in children (MIS-C), linked to antecedent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is associated with considerable morbidity. Prevention of SARS-CoV-2 infection or coronavirus disease 2019 (COVID-19) by vaccination might also decrease MIS-C likelihood. Methods: In a multicenter, case-control, public health investigation of children ages 5-18 years hospitalized from 1 July 2021 to 7 April 2022, we compared the odds of being fully vaccinated (2 doses of BNT162b2 vaccine ≥28 days before hospital admission) between MIS-C case-patients and hospital-based controls who tested negative for SARS-CoV-2. These associations were examined by age group, timing of vaccination, and periods of Delta and Omicron variant predominance using multivariable logistic regression. Results: We compared 304 MIS-C case-patients (280 [92%] unvaccinated) with 502 controls (346 [69%] unvaccinated). MIS-C was associated with decreased likelihood of vaccination (adjusted OR [aOR]: .16; 95% CI: .10-.26), including among children ages 5-11 years (aOR: .22; 95% CI: .10-.52), ages 12-18 years (aOR: .10; 95% CI: .05-.19), and during the Delta (aOR: .06; 95% CI: .02-.15) and Omicron (aOR: .22; 95% CI: .11-.42) variant-predominant periods. This association persisted beyond 120 days after the second dose (aOR: .08; 95% CI: .03-.22) in 12-18-year-olds. Among all MIS-C case-patients, 187 (62%) required intensive care unit admission and 280 (92%) vaccine-eligible case-patients were unvaccinated. Conclusions: Vaccination with 2 doses of BNT162b2 is associated with reduced likelihood of MIS-C in children ages 5-18 years. Most vaccine-eligible hospitalized patients with MIS-C were unvaccinated.Item BNT162b2 Protection against the Omicron Variant in Children and Adolescents(Massachusetts Medical Society, 2022) Price, Ashley M.; Olson, Samantha M.; Newhams, Margaret M.; Halasa, Natasha B.; Boom, Julie A.; Sahni, Leila C.; Pannaraj, Pia S.; Irby, Katherine; Bline, Katherine E.; Maddux, Aline B.; Nofziger, Ryan A.; Cameron, Melissa A.; Walker, Tracie C.; Schwartz, Stephanie P.; Mack, Elizabeth H.; Smallcomb, Laura; Schuster, Jennifer E.; Hobbs, Charlotte V.; Kamidani, Satoshi; Tarquinio, Keiko M.; Bradford, Tamara T.; Levy, Emily R.; Chiotos, Kathleen; Bhumbra, Samina S.; Cvijanovich, Natalie Z.; Heidemann, Sabrina M.; Cullimore, Melissa L.; Gertz, Shira J.; Coates, Bria M.; Staat, Mary A.; Zinter, Matt S.; Kong, Michele; Chatani, Brandon M.; Hume, Janet R.; Typpo, Katri V.; Maamari, Mia; Flori, Heidi R.; Tenforde, Mark W.; Zambrano, Laura D.; Campbell, Angela P.; Patel, Manish M.; Randolph, Adrienne G.; Overcoming Covid-19 Investigators; Pediatrics, School of MedicineBackground: Spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.529 (omicron) variant, which led to increased U.S. hospitalizations for coronavirus disease 2019 (Covid-19), generated concern about immune evasion and the duration of protection from vaccines in children and adolescents. Methods: Using a case-control, test-negative design, we assessed vaccine effectiveness against laboratory-confirmed Covid-19 leading to hospitalization and against critical Covid-19 (i.e., leading to receipt of life support or to death). From July 1, 2021, to February 17, 2022, we enrolled case patients with Covid-19 and controls without Covid-19 at 31 hospitals in 23 states. We estimated vaccine effectiveness by comparing the odds of antecedent full vaccination (two doses of BNT162b2 messenger RNA vaccine) at least 14 days before illness among case patients and controls, according to time since vaccination for patients 12 to 18 years of age and in periods coinciding with circulation of B.1.617.2 (delta) (July 1, 2021, to December 18, 2021) and omicron (December 19, 2021, to February 17, 2022) among patients 5 to 11 and 12 to 18 years of age. Results: We enrolled 1185 case patients (1043 [88%] of whom were unvaccinated, 291 [25%] of whom received life support, and 14 of whom died) and 1627 controls. During the delta-predominant period, vaccine effectiveness against hospitalization for Covid-19 among adolescents 12 to 18 years of age was 93% (95% confidence interval [CI], 89 to 95) 2 to 22 weeks after vaccination and was 92% (95% CI, 80 to 97) at 23 to 44 weeks. Among adolescents 12 to 18 years of age (median interval since vaccination, 162 days) during the omicron-predominant period, vaccine effectiveness was 40% (95% CI, 9 to 60) against hospitalization for Covid-19, 79% (95% CI, 51 to 91) against critical Covid-19, and 20% (95% CI, -25 to 49) against noncritical Covid-19. During the omicron period, vaccine effectiveness against hospitalization among children 5 to 11 years of age was 68% (95% CI, 42 to 82; median interval since vaccination, 34 days). Conclusions: BNT162b2 vaccination reduced the risk of omicron-associated hospitalization by two thirds among children 5 to 11 years of age. Although two doses provided lower protection against omicron-associated hospitalization than against delta-associated hospitalization among adolescents 12 to 18 years of age, vaccination prevented critical illness caused by either variant.Item Characteristics and Outcomes of US Children and Adolescents With Multisystem Inflammatory Syndrome in Children (MIS-C) Compared With Severe Acute COVID-19(AMA, 2021-02) Feldstein, Leora R.; Tenforde, Mark W.; Friedman, Kevin G.; Newhams, Margaret; Rose, Erica Billig; Dapul, Heda; Soma, Vijaya L.; Maddux, Aline B.; Mourani, Peter M.; Bowens, Cindy; Maamari, Mia; Hall, Mark W.; Riggs, Becky J.; Giuliano, John S.; Singh, Aalok R.; Li, Simon; Kong, Michele; Schuster, Jennifer E.; McLaughlin, Gwenn E.; Schwartz, Stephanie P.; Walker, Tracie C.; Loftis, Laura L.; Hobbs, Charlotte V.; Halasa, Natasha B.; Doymaz, Sule; Babbitt, Christopher J.; Hume, Janet R.; Gertz, Shira J.; Irby, Katherine; Clouser, Katharine N.; Cvijanovich, Natalie Z.; Bradford, Tamara T.; Smith, Lincoln S.; Heidemann, Sabrina M.; Zackai, Sheemon P.; Wellnitz, Kari; Nofziger, Ryan A.; Horwitz, Steven M.; Carroll, Ryan W.; Rowan, Courtney M.; Tarquinio, Keiko M.; Mack, Elizabeth H.; Fitzgerald, Julie C.; Coates, Bria M.; Jackson, Ashley M.; Young, Cameron C.; Son, Mary Beth F.; Patel, Manish M.; Newburger, Jane W.; Randolph, Adrienne G.; Overcoming COVID-19 Investigators; Pediatrics, School of MedicineImportance Refinement of criteria for multisystem inflammatory syndrome in children (MIS-C) may inform efforts to improve health outcomes. Objective To compare clinical characteristics and outcomes of children and adolescents with MIS-C vs those with severe coronavirus disease 2019 (COVID-19). Setting, Design, and Participants Case series of 1116 patients aged younger than 21 years hospitalized between March 15 and October 31, 2020, at 66 US hospitals in 31 states. Final date of follow-up was January 5, 2021. Patients with MIS-C had fever, inflammation, multisystem involvement, and positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reverse transcriptase–polymerase chain reaction (RT-PCR) or antibody test results or recent exposure with no alternate diagnosis. Patients with COVID-19 had positive RT-PCR test results and severe organ system involvement. Exposure SARS-CoV-2. Main Outcomes and Measures Presenting symptoms, organ system complications, laboratory biomarkers, interventions, and clinical outcomes. Multivariable regression was used to compute adjusted risk ratios (aRRs) of factors associated with MIS-C vs COVID-19. Results Of 1116 patients (median age, 9.7 years; 45% female), 539 (48%) were diagnosed with MIS-C and 577 (52%) with COVID-19. Compared with patients with COVID-19, patients with MIS-C were more likely to be 6 to 12 years old (40.8% vs 19.4%; absolute risk difference [RD], 21.4% [95% CI, 16.1%-26.7%]; aRR, 1.51 [95% CI, 1.33-1.72] vs 0-5 years) and non-Hispanic Black (32.3% vs 21.5%; RD, 10.8% [95% CI, 5.6%-16.0%]; aRR, 1.43 [95% CI, 1.17-1.76] vs White). Compared with patients with COVID-19, patients with MIS-C were more likely to have cardiorespiratory involvement (56.0% vs 8.8%; RD, 47.2% [95% CI, 42.4%-52.0%]; aRR, 2.99 [95% CI, 2.55-3.50] vs respiratory involvement), cardiovascular without respiratory involvement (10.6% vs 2.9%; RD, 7.7% [95% CI, 4.7%-10.6%]; aRR, 2.49 [95% CI, 2.05-3.02] vs respiratory involvement), and mucocutaneous without cardiorespiratory involvement (7.1% vs 2.3%; RD, 4.8% [95% CI, 2.3%-7.3%]; aRR, 2.29 [95% CI, 1.84-2.85] vs respiratory involvement). Patients with MIS-C had higher neutrophil to lymphocyte ratio (median, 6.4 vs 2.7, P < .001), higher C-reactive protein level (median, 152 mg/L vs 33 mg/L; P < .001), and lower platelet count (<150 ×103 cells/μL [212/523 {41%} vs 84/486 {17%}, P < .001]). A total of 398 patients (73.8%) with MIS-C and 253 (43.8%) with COVID-19 were admitted to the intensive care unit, and 10 (1.9%) with MIS-C and 8 (1.4%) with COVID-19 died during hospitalization. Among patients with MIS-C with reduced left ventricular systolic function (172/503, 34.2%) and coronary artery aneurysm (57/424, 13.4%), an estimated 91.0% (95% CI, 86.0%-94.7%) and 79.1% (95% CI, 67.1%-89.1%), respectively, normalized within 30 days. Conclusions and Relevance This case series of patients with MIS-C and with COVID-19 identified patterns of clinical presentation and organ system involvement. These patterns may help differentiate between MIS-C and COVID-19.Item Cross-reactive immunity against the SARS-CoV-2 Omicron variant is low in pediatric patients with prior COVID-19 or MIS-C(Springer Nature, 2022-05-27) Tang, Juanjie; Novak, Tanya; Hecker, Julian; Grubbs, Gabrielle; Tuz Zahra, Fatema; Bellusci, Lorenza; Pourhashemi, Sara; Chou, Janet; Moffitt, Kristin; Halasa, Natasha B.; Schwartz, Stephanie P.; Walker, Tracie C.; Tarquinio, Keiko M.; Zinter, Matt S.; Staat, Mary A.; Gertz, Shira J.; Cvijanovich, Natalie Z.; Schuster, Jennifer E.; Loftis, Laura L.; Coates, Bria M.; Mack, Elizabeth H.; Irby, Katherine; Fitzgerald, Julie C.; Rowan, Courtney M.; Kong, Michele; Flori, Heidi R.; Maddux, Aline B.; Shein, Steven L.; Crandall, Hillary; Hume, Janet R.; Hobbs, Charlotte V.; Tremoulet, Adriana H.; Shimizu, Chisato; Burns, Jane C.; Chen, Sabrina R.; Moon, Hye Kyung; Lange, Christoph; Randolph, Adrienne G.; Khurana, Surender; Pediatrics, School of MedicineNeutralization capacity of antibodies against Omicron after a prior SARS-CoV-2 infection in children and adolescents is not well studied. Therefore, we evaluated virus-neutralizing capacity against SARS-CoV-2 Alpha, Beta, Gamma, Delta and Omicron variants by age-stratified analyses (<5, 5-11, 12-21 years) in 177 pediatric patients hospitalized with severe acute COVID-19, acute MIS-C, and in convalescent samples of outpatients with mild COVID-19 during 2020 and early 2021. Across all patients, less than 10% show neutralizing antibody titers against Omicron. Children <5 years of age hospitalized with severe acute COVID-19 have lower neutralizing antibodies to SARS-CoV-2 variants compared with patients >5 years of age. As expected, convalescent pediatric COVID-19 and MIS-C cohorts demonstrate higher neutralization titers than hospitalized acute COVID-19 patients. Overall, children and adolescents show some loss of cross-neutralization against all variants, with the most pronounced loss against Omicron. In contrast to SARS-CoV-2 infection, children vaccinated twice demonstrated higher titers against Alpha, Beta, Gamma, Delta and Omicron. These findings can influence transmission, re-infection and the clinical disease outcome from emerging SARS-CoV-2 variants and supports the need for vaccination in children.Item Effectiveness of Maternal Vaccination with mRNA COVID-19 Vaccine During Pregnancy Against COVID-19–Associated Hospitalization in Infants Aged <6 Months — 17 States, July 2021–January 2022(Center for Disease Control, 2022-02-18) Halasa, Natasha B.; Olson, Samantha M.; Staat, Mary A.; Newhams, Margaret M.; Price, Ashley M.; Boom, Julie A.; Sahni, Leila C.; Cameron, Melissa A.; Pannaraj, Pia S.; Bline, Katherine E.; Bhumbra, Samina S.; Bradford, Tamara T.; Chiotos, Kathleen; Coates, Bria M.; Cullimore, Melissa L.; Cvijanovich, Natalie Z.; Flori, Heidi R.; Gertz, Shira J.; Heidemann, Sabrina M.; Hobbs, Charlotte V.; Hume, Janet R.; Irby, Katherine; Kamidani, Satoshi; Kong, Michele; Levy, Emily R.; Mack, Elizabeth H.; Maddux, Aline B.; Michelson, Kelly N.; Nofziger, Ryan A.; Schuster, Jennifer E.; Schwartz, Stephanie P.; Smallcomb, Laura; Tarquinio, Keiko M.; Walker, Tracie C.; Zinter, Matt S.; Gilboa, Suzanne M.; Polen, Kara N.; Campbell, Angela P.; Randolph, Adrienne G.; Patel, Manish M.; Overcoming COVID-19 Investigators; Overcoming COVID-19 Network; Pediatrics, School of MedicineCOVID-19 vaccination is recommended for persons who are pregnant, breastfeeding, trying to get pregnant now, or who might become pregnant in the future, to protect them from COVID-19.§ Infants are at risk for life-threatening complications from COVID-19, including acute respiratory failure (1). Evidence from other vaccine-preventable diseases suggests that maternal immunization can provide protection to infants, especially during the high-risk first 6 months of life, through passive transplacental antibody transfer (2). Recent studies of COVID-19 vaccination during pregnancy suggest the possibility of transplacental transfer of SARS-CoV-2-specific antibodies that might provide protection to infants (3-5); however, no epidemiologic evidence currently exists for the protective benefits of maternal immunization during pregnancy against COVID-19 in infants. The Overcoming COVID-19 network conducted a test-negative, case-control study at 20 pediatric hospitals in 17 states during July 1, 2021-January 17, 2022, to assess effectiveness of maternal completion of a 2-dose primary mRNA COVID-19 vaccination series during pregnancy against COVID-19 hospitalization in infants. Among 379 hospitalized infants aged <6 months (176 with COVID-19 [case-infants] and 203 without COVID-19 [control-infants]), the median age was 2 months, 21% had at least one underlying medical condition, and 22% of case- and control-infants were born premature (<37 weeks gestation). Effectiveness of maternal vaccination during pregnancy against COVID-19 hospitalization in infants aged <6 months was 61% (95% CI = 31%-78%). Completion of a 2-dose mRNA COVID-19 vaccination series during pregnancy might help prevent COVID-19 hospitalization among infants aged <6 months.Item Extracorporeal Membrane Oxygenation Characteristics and Outcomes in Children and Adolescents With COVID-19 or Multisystem Inflammatory Syndrome Admitted to U.S. ICUs(Wolters Kluwer, 2023) Bembea, Melania M.; Loftis, Laura L.; Thiagarajan, Ravi R.; Young, Cameron C.; McCadden, Timothy P.; Newhams, Margaret M.; Kucukak, Suden; Mack, Elizabeth H.; Fitzgerald, Julie C.; Rowan, Courtney M.; Maddux, Aline B.; Kolmar, Amanda R.; Irby, Katherine; Heidemann, Sabrina; Schwartz, Stephanie P.; Kong, Michele; Crandall, Hillary; Havlin, Kevin M.; Singh, Aalok R.; Schuster, Jennifer E.; Hall, Mark W.; Wellnitz, Kari A.; Maamari, Mia; Gaspers, Mary G.; Nofziger, Ryan A.; Lim, Peter Paul C.; Carroll, Ryan W.; Munoz, Alvaro Coronado; Bradford, Tamara T.; Cullimore, Melissa L.; Halasa, Natasha B.; McLaughlin, Gwenn E.; Pannaraj, Pia S.; Cvijanovich, Natalie Z.; Zinter, Matt S.; Coates, Bria M.; Horwitz, Steven M.; Hobbs, Charlotte V.; Dapul, Heda; Graciano, Ana Lia; Butler, Andrew D.; Patel, Manish M.; Zambrano, Laura D.; Campbell, Angela P.; Randolph, Adrienne G.; Overcoming COVID-19 Investigators; Pediatrics, School of MedicineObjectives: Extracorporeal membrane oxygenation (ECMO) has been used successfully to support adults with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related cardiac or respiratory failure refractory to conventional therapies. Comprehensive reports of children and adolescents with SARS-CoV-2-related ECMO support for conditions, including multisystem inflammatory syndrome in children (MIS-C) and acute COVID-19, are needed. Design: Case series of patients from the Overcoming COVID-19 public health surveillance registry. Setting: Sixty-three hospitals in 32 U.S. states reporting to the registry between March 15, 2020, and December 31, 2021. Patients: Patients less than 21 years admitted to the ICU meeting Centers for Disease Control criteria for MIS-C or acute COVID-19. Interventions: None. Measurements and main results: The final cohort included 2,733 patients with MIS-C ( n = 1,530; 37 [2.4%] requiring ECMO) or acute COVID-19 ( n = 1,203; 71 [5.9%] requiring ECMO). ECMO patients in both groups were older than those without ECMO support (MIS-C median 15.4 vs 9.9 yr; acute COVID-19 median 15.3 vs 13.6 yr). The body mass index percentile was similar in the MIS-C ECMO versus no ECMO groups (89.9 vs 85.8; p = 0.22) but higher in the COVID-19 ECMO versus no ECMO groups (98.3 vs 96.5; p = 0.03). Patients on ECMO with MIS-C versus COVID-19 were supported more often with venoarterial ECMO (92% vs 41%) for primary cardiac indications (87% vs 23%), had ECMO initiated earlier (median 1 vs 5 d from hospitalization), shorter ECMO courses (median 3.9 vs 14 d), shorter hospital length of stay (median 20 vs 52 d), lower in-hospital mortality (27% vs 37%), and less major morbidity at discharge in survivors (new tracheostomy, oxygen or mechanical ventilation need or neurologic deficit; 0% vs 11%, 0% vs 20%, and 8% vs 15%, respectively). Most patients with MIS-C requiring ECMO support (87%) were admitted during the pre-Delta (variant B.1.617.2) period, while most patients with acute COVID-19 requiring ECMO support (70%) were admitted during the Delta variant period. Conclusions: ECMO support for SARS-CoV-2-related critical illness was uncommon, but type, initiation, and duration of ECMO use in MIS-C and acute COVID-19 were markedly different. Like pre-pandemic pediatric ECMO cohorts, most patients survived to hospital discharge.Item Factors Associated With COVID-19 Non-vaccination in Adolescents Hospitalized Without COVID-19(Oxford University Press, 2023) Sahni, Leila C.; Price, Ashley M.; Olson, Samantha M.; Newhams, Margaret M.; Pannaraj, Pia S.; Maddux, Aline B.; Halasa, Natasha B.; Bline, Katherine E.; Cameron, Melissa A.; Schwartz, Stephanie P.; Walker, Tracie C.; Irby, Katherine; Chiotos, Kathleen; Nofziger, Ryan A.; Mack, Elizabeth H.; Smallcomb, Laura; Bradford, Tamara T.; Kamidani, Satoshi; Tarquinio, Keiko M.; Cvijanovich, Natalie Z.; Schuster, Jennifer E.; Bhumbra, Samina S.; Levy, Emily R.; Hobbs, Charlotte V.; Cullimore, Melissa L.; Coates, Bria M.; Heidemann, Sabrina M.; Gertz, Shira J.; Kong, Michele; Flori, Heidi R.; Staat, Mary A.; Zinter, Matt S.; Hume, Janet R.; Chatani, Brandon M.; Gaspers, Mary G.; Maamari, Mia; Randolph, Adrienne G.; Patel, Manish M.; Boom, Julie A.; Pediatrics, School of MedicineBackground: Pfizer-BioNTech COVID-19 vaccine received emergency use authorization for persons ≥ 16 years in December 2020 and for adolescents 12-15 years in May 2021. Despite the clear benefits and favorable safety profile, vaccine uptake in adolescents has been suboptimal. We sought to assess factors associated with COVID-19 non-vaccination in adolescents 12-18 years of age. Methods: Between June 1, 2021 and April 29, 2022, we assessed factors associated with COVID-19 non-vaccination in hospitalized adolescents ages 12-18 years enrolled in the Overcoming COVID-19 vaccine effectiveness network. Demographic characteristics and clinical information were captured through parent interviews and/or electronic medical record abstraction; COVID-19 vaccination was assessed through documented sources. We assessed associations between receipt of the COVID-19 vaccine and demographic and clinical factors using univariate and multivariable logistic regression and estimated adjusted odds ratios (aOR) for each factor associated with non-vaccination. Results: Among 1665 hospitalized adolescents without COVID-19, 56% were unvaccinated. Unvaccinated adolescents were younger (median age 15.1 years vs. 15.4 years, p < .01) and resided in areas with higher social vulnerability index (SVI) scores (median 0.6 vs 0.5, p < .001) than vaccinated adolescents. Residence in the Midwest [aOR 2.60 (95% CI: 1.80, 3.79)] or South [aOR 2.49 (95% CI: 1.77, 3.54)] US census regions, rarely or never receiving influenza vaccine [aOR 5.31 (95% CI: 3.81, 7.47)], and rarely or never taking precautions against COVID-19 [aOR 3.17 (95% CI: 1.94, 5.31)] were associated with non-vaccination against COVID-19. Conclusions: Efforts to increase COVID-19 vaccination of adolescents should focus on persons with geographic, socioeconomic, and medical risk factors associated with non-vaccination.Item Frequency, Characteristics and Complications of COVID-19 in Hospitalized Infants(Wolters Kluwer, 2022) Hobbs, Charlotte V.; Woodworth, Kate; Young, Cameron C.; Jackson, Ashley M.; Newhams, Margaret M.; Dapul, Heda; Maamari, Mia; Hall, Mark W.; Maddux, Aline B.; Sing, Aalok R.; Schuster, Jennifer E.; Rowan, Courtney M.; Fitzgerald, Julie C.; Irby, Katherine; Kong, Michele; Mack, Elizabeth H.; Staat, Mary A.; Cvijanovich, Natalie Z.; Bembea, Melania M.; Coates, Bria M.; Halasa, Natasha B.; Walker, Tracie C.; McLaughlin, Gwenn E.; Babbitt, Christopher J.; Nofziger, Ryan A.; Loftis, Laura L.; Bradford, Tamara T.; Campbell, Angela P.; Patel, Manish M.; Randolph, Adrienne G.; Overcoming COVID-19 Investigators; Pediatrics, School of MedicineBackground: Previous studies of severe acute respiratory syndrome coronavirus 2 infection in infants have incompletely characterized factors associated with severe illness or focused on infants born to mothers with coronavirus disease 2019 (COVID-19). Here we highlight demographics, clinical characteristics and laboratory values that differ between infants with and without severe acute COVID-19. Methods: Active surveillance was performed by the Overcoming COVID-19 network to identify children and adolescents with severe acute respiratory syndrome coronavirus 2-related illness hospitalized at 62 sites in 31 states from March 15 to December 27, 2020. We analyzed patients >7 days to <1 year old hospitalized with symptomatic acute COVID-19. Results: We report 232 infants >7 days to <1 year of age hospitalized with acute symptomatic COVID-19 from 37 US hospitals in our cohort from March 15 to December 27, 2020. Among 630 cases of severe COVID-19 in patients >7 days to <18 years old, 128 (20.3%) were infants. In infants with severe illness from the entire study period, the median age was 2 months, 66% were from racial and ethnic minority groups, 66% were previously healthy, 73% had respiratory complications, 13% received mechanical ventilation and <1% died. Conclusions: Infants accounted for over a fifth of children <18 years of age hospitalized for severe acute COVID-19, commonly manifesting with respiratory symptoms and complications. Although most infants hospitalized with COVID-19 did not suffer significant complications, longer term outcomes remain unclear. Notably, 75% of infants with severe disease were <6 months of age in this cohort study period, which predated maternal COVID-19 vaccination, underscoring the importance of maternal vaccination for COVID-19 in protecting the mother and infant.Item Infants Admitted to US Intensive Care Units for RSV Infection During the 2022 Seasonal Peak(American Medical Association, 2023-08-01) Halasa, Natasha; Zambrano, Laura D.; Amarin, Justin Z.; Stewart, Laura S.; Newhams, Margaret M.; Levy, Emily R.; Shein, Steven L.; Carroll, Christopher L.; Fitzgerald, Julie C.; Michaels, Marian G.; Bline, Katherine; Cullimore, Melissa L.; Loftis, Laura; Montgomery, Vicki L.; Jeyapalan, Asumthia S.; Pannaraj, Pia S.; Schwarz, Adam J.; Cvijanovich, Natalie Z.; Zinter, Matt S.; Maddux, Aline B.; Bembea, Melania M.; Irby, Katherine; Zerr, Danielle M.; Kuebler, Joseph D.; Babbitt, Christopher J.; Glas Gaspers, Mary; Nofziger, Ryan A.; Kong, Michele; Coates, Bria M.; Schuster, Jennifer E.; Gertz, Shira J.; Mack, Elizabeth H.; White, Benjamin R.; Harvey, Helen; Hobbs, Charlotte V.; Dapul, Heda; Butler, Andrew D.; Bradford, Tamara T.; Rowan, Courtney M.; Wellnitz, Kari; Allen Staat, Mary; Aguiar, Cassyanne L.; Hymes, Saul R.; Randolph, Adrienne G.; Campbell, Angela P.; RSV-PIC Investigators; Pediatrics, School of MedicineImportance: Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections (LRTIs) and infant hospitalization worldwide. Objective: To evaluate the characteristics and outcomes of RSV-related critical illness in US infants during peak 2022 RSV transmission. Design, setting, and participants: This cross-sectional study used a public health prospective surveillance registry in 39 pediatric hospitals across 27 US states. Participants were infants admitted for 24 or more hours between October 17 and December 16, 2022, to a unit providing intensive care due to laboratory-confirmed RSV infection. Exposure: Respiratory syncytial virus. Main outcomes and measures: Data were captured on demographics, clinical characteristics, signs and symptoms, laboratory values, severity measures, and clinical outcomes, including receipt of noninvasive respiratory support, invasive mechanical ventilation, vasopressors or extracorporeal membrane oxygenation, and death. Mixed-effects multivariable log-binomial regression models were used to assess associations between intubation status and demographic factors, gestational age, and underlying conditions, including hospital as a random effect to account for between-site heterogeneity. Results: The first 15 to 20 consecutive eligible infants from each site were included for a target sample size of 600. Among the 600 infants, the median (IQR) age was 2.6 (1.4-6.0) months; 361 (60.2%) were male, 169 (28.9%) were born prematurely, and 487 (81.2%) had no underlying medical conditions. Primary reasons for admission included LRTI (594 infants [99.0%]) and apnea or bradycardia (77 infants [12.8%]). Overall, 143 infants (23.8%) received invasive mechanical ventilation (median [IQR], 6.0 [4.0-10.0] days). The highest level of respiratory support for nonintubated infants was high-flow nasal cannula (243 infants [40.5%]), followed by bilevel positive airway pressure (150 infants [25.0%]) and continuous positive airway pressure (52 infants [8.7%]). Infants younger than 3 months, those born prematurely (gestational age <37 weeks), or those publicly insured were at higher risk for intubation. Four infants (0.7%) received extracorporeal membrane oxygenation, and 2 died. The median (IQR) length of hospitalization for survivors was 5 (4-10) days. Conclusions and relevance: In this cross-sectional study, most US infants who required intensive care for RSV LRTIs were young, healthy, and born at term. These findings highlight the need for RSV preventive interventions targeting all infants to reduce the burden of severe RSV illness.