ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Chu, Timothy H."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Correction: γδ T cell IFNγ production is directly subverted by Yersinia pseudotuberculosis outer protein YopJ in mice and humans
    (Public Library of Science, 2022-05-25) Chu, Timothy H.; Khairallah, Camille; Shieh, Jason; Cho, Rhea; Qiu, Zhijuan; Zhang, Yue; Eskiocak, Onur; Thanassi, David G.; Kaplan, Mark H.; Beyaz, Semir; Yang, Vincent W.; Bliska, James B.; Sheridan, Brian S.; Microbiology and Immunology, School of Medicine
    This corrects the article "γδ T cell IFNγ production is directly subverted by Yersinia pseudotuberculosis outer protein YopJ in mice and humans" in volume 17, e1010103.
  • Loading...
    Thumbnail Image
    Item
    γδ T cell IFNγ production is directly subverted by Yersinia pseudotuberculosis outer protein YopJ in mice and humans
    (Public Library of Science, 2021-12-06) Chu, Timothy H.; Khairallah, Camille; Shieh, Jason; Cho, Rhea; Qiu, Zhijuan; Zhang, Yue; Eskiocak, Onur; Thanassi, David G.; Kaplan, Mark H.; Beyaz, Semir; Yang, Vincent W.; Bliska, James B.; Sheridan, Brian S.; Microbiology and Immunology, School of Medicine
    Yersinia pseudotuberculosis is a foodborne pathogen that subverts immune function by translocation of Yersinia outer protein (Yop) effectors into host cells. As adaptive γδ T cells protect the intestinal mucosa from pathogen invasion, we assessed whether Y. pseudotuberculosis subverts these cells in mice and humans. Tracking Yop translocation revealed that the preferential delivery of Yop effectors directly into murine Vγ4 and human Vδ2+ T cells inhibited anti-microbial IFNγ production. Subversion was mediated by the adhesin YadA, injectisome component YopB, and translocated YopJ effector. A broad anti-pathogen gene signature and STAT4 phosphorylation levels were inhibited by translocated YopJ. Thus, Y. pseudotuberculosis attachment and translocation of YopJ directly into adaptive γδ T cells is a major mechanism of immune subversion in mice and humans. This study uncovered a conserved Y. pseudotuberculosis pathway that subverts adaptive γδ T cell function to promote pathogenicity.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University